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ABSTRACT
Proactive Energy Optimization in Residential Buildings with Weather and Market Forecasts

Cody Ryan Simmons
Department of Chemical Engineering, BYU
Master of Science

This work explores the development of a home energy management system (HEMS) that
uses weather and market forecasts to optimize the usage of home appliances and to manage bat-
tery usage and solar power production. A Moving Horizon Estimation (MHE) application is used
to find the unknown home model parameters. These parameters are then updated in a Model
Predictive Controller (MPC) which optimizes and balances competing comfort and economic ob-
jectives. Combining MHE and MPC applications alleviates model complexity commonly seen in
HEMS by using a lumped parameter model that is adapted to fit a high-fidelity model. HVAC
on/off behaviors are simulated by using Mathematical Program with Complementary Constraints
(MPCCs) and solved in near real-time with a nonlinear solver. Removing HVAC on/off as a dis-
crete variable decreases potential solutions and consequently reduces solve time and increases the
probability of reaching a more optimal solution. The results of this work indicate that energy
management optimization significantly decreases energy costs and balances energy usage more
effectively throughout the day compared to a home with regular temperature control. A case study
for Phoenix, Arizona shows an energy reduction of 21% and a cost reduction of 40%. Homes us-
ing this home energy optimization will contribute less to the grid peak load and therefore, improve
grid stability and reduce the amplitude of load following cycles for utilities. This case study com-
bines renewable energy, energy storage, forecasts, cooling system, variable rate electricity plan and
a multi-objective function allowing for a complete home energy optimization assessment. There
remain several challenges, including improved forecast models, improved computational perfor-
mance to allow the algorithms to run in real-time, and mixed empirical / first principles machine
learning methods to guide the model structure.

Keywords: model predictive control, moving horizons estimation, home energy optimization, fore-
casty theemal.modeling, HEMS, energy storage, solar generation
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CHAPTER 1. INTRODUCTION

The state of Utah is a leader in solar energy installations, ranking second nationally in 2016
with a cumulative total of over 1500 MW installed, enough power for 300,000 homes [1]. This
investment helps reduce air quality problems, but also results in several substantial technological
challenges. Alternative energy sources such as solar and wind power have inherent variability
which has been shown to destabilize the power grid as the market penetration increases [2]. The
move toward alternative energy and the associated problems have motivated development on pre-
dictive control methodologies for building energy management. Demand response optimization
mitigates the problems by shifting demand to match production and shaving peak demand. Proac-
tive and predictive methods also restore some grid stability, especially when coupled with energy
storage technologies which act as buffers to the time variability of alternative energy sources [1].
In this work, a proactive demand response energy system management algorithm incorporates a
reduced-order building model with model predictive control (MPC) and moving horizon estima-
tion (MHE). Conventional energy management solutions currently in implementation are predom-
inantly reactive, meaning that they only respond to external stimuli as they happen. The proposed
system incorporates machine-learned forecasts of future conditions (e.g., forecast supply, demand,
and price) to determine when to store, consume, or generate energy and modify the model dynam-
ically based on system measurements in a specified past time horizon (MHE). While the research
focuses on specific energy systems where data is readily available, the resulting approach has ap-
plication at a wide range of scales including single homes and larger buildings such as apartment

complexes.

1.1 Grid Stabilization

Due to the time dependency of solar and wind, when energy is used becomes as impor-

tant as how energy is used, if not more so. Electricity is a commodity that must be generated
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and consumed simultaneously. Both solar and wind energy are inherently intermittent, causing
issues with simultaneous production and consumption [3]. The introduction of intermittent energy
sources creates a grid management problem that is currently being addressed with a reactive op-
erating strategy: rapidly ramping fuel-fired power plants to accommodate ever-changing solar and
wind [3]. This is an inefficient use of capital and energy. Reactive strategies create a practical
limit to the amount of renewable power that is accommodated by grid infrastructure. Much of the
variability in the grid is predictable given weather forecasts and knowledge of consumer habits [4].
While commercially viable storage technologies are emerging, none have been married to pre-
dictive energy management tools that leverage existing techniques for forecasting energy supply
and demand. By implementing predictive algorithms that use machine-learned forecasts, energy
systems are responsive, charging storage ahead of a shortage event to alleviate future demand.

Powell et al. demonstrate this concept in a paper demonstrating an energy system that
uses energy storage systems to match energy production with energy demand, using a solar power
plant as a case study [3]. The goal of the study is to proactively optimize the system to respond to
changes in the environment rather than reactively responding to changes. Powell et al. demonstrate
that proactive dynamic optimization increases the percentage of incident energy collected by the
solar power plant in all scenarios, but most significantly on days when cloud cover exacerbates the
intermittent nature of the power source. Powell et al. conclude that different weather conditions
correspond with different optimal operating strategies, further demonstrating that proactive control
utilizing forecast data improves the efficiency of operation of renewable energy sources. This
demonstrates how proactive energy management leads to increased grid stability.

Smart metering is another strategy for maintaining grid stability. Smart meters allow util-
ities to receive real time data of consumer energy usage. When the majority of consumers have
smart meters, a smart grid is formed. Smart grids allow seamless integration of renewable energy
sources due to increased knowledge of the system [5, 6]. Utility companies react to changes be-
cause the smart grid provides real-time data on consumers’ energy usage. If consumers generate
power using solar or wind, then there is a reduced demand seen by the utility company. The use of
smart meters allows the utility company to see this reduced demand in real time and make decisions
accordingly. Smart metering also provides the opportunity for dynamic energy pricing. Dynamic

energy pricing allows the utility to manage the electricity on the demand side. With variable utility
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rates, residential and industrial consumers are able to react to changing electricity prices. This
leads to an increase in grid reliability and efficiency as it reduces peak loads [7]. An important
observation is that these pricing strategies often do not reduce the amount of energy consumed

during the entire day, but instead, smooth out the demand throughout the day.

1.2 Demand Side Management

Heating, ventilation, and air conditioning (HVAC) systems are among the largest electri-
cal energy consumers and large contributors to peak demand in the United States [8]. One major
topic of recent research is demand side management or demand response optimization. Demand
response optimization focuses on control strategies for consumers of electrical energy, often re-
sponding to dynamic pricing structures set up by utility companies. Sheha and Powell show that
a HEMS with a PV system along with battery energy storage can be economically feasible if cou-
pled with the right utility rate structure [9]. Sheha and Powell also review how rate structures can
incentivize or deincentivize energy storage and other peak shaving technologies [9]. With the right
rate structure, consumers can implement strategies to reduce their electricity consumption and re-
duce costs. Simultaneously, this demand side response helps the utility company and enhances grid
stability by smoothing out energy demand throughout the day and reducing peak demand, often
through energy storage.

Multiple review articles have been published on demand response [10—-15]. Aghaei and Al-
izadeh review demand response, showing how demand response leads to greater grid stability with
renewable energy penetration [10]. Shariatzadeh et al. review demand response implementation
and methods and suggest how demand response may be implemented in smart grids [14]. Wang
et al. and Brahman et al. review and describe methods for integrated demand response in smart
energy hubs. These hubs combine local energy generation sources (i.e. solar power, natural gas
turbines) and energy storage (thermal energy storage, battery) and allow them to manage sources
of consumed power, acting as semi-independent energy systems interacting with the grid [15, 16].
Good et al. describe the barriers to implementation of demand response including regulatory bar-
riers, market design, physical network barriers, anthropogenic barriers, and other human factors
such as lack of understanding [11]. O’Connell et al. review many of the challenges to demand

response.such.as.lack of experience, inherent system uncertainty (i.e. weather and occupancy),
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reliable control strategies, and market frameworks [17]. Paterakis et al. review demand enabling
technologies for demand response and provide an overview of the global status quo of demand
response implementation [12]. Yoon et al. investigated the effects of using a demand response
controller (DRC) to control the temperature set-points in a home to reduce peak load and energy
cost. They demonstrate that the DRC is capable of decreasing the peak load by 24.7%, annual
electricity HVAC uses by 4.0%, and cost of electricity by 7.7% to 10.8% based on the pricing
structure [8]. This study shows that there is potential for manipulating home energy consumption
by adjusting temperature set-points. Controlling set-points with the addition of market and weather

forecasts is predicted to provide even better reductions in cost, consumption, and peak loads.

1.3 Forecasting Methodology

Forecasting is one of the most important tools for proactive energy management systems.
Proactive systems inherently require predictions of future system behavior to mitigate foreseen
issues rather than reacting to them. A significant amount of research has been done to optimize and
forecast HVAC systems as they are the largest consumer of building electricity and consequently
cause a majority of peak loads [18—20]. Weather forecasting is also an active research topic because
of the increasing penetration of renewable energy sources and the inherent dependency on weather
conditions for power generation. It is crucial to incorporate weather and HVAC forecasting because
they are intrinsically interrelated. For example, if it is a hot and sunny day, solar energy generation
increases and the HVAC system requires more energy to cool the home. The energy management
system may sub-cool the home or allow the temperature set-point to increase if there is insufficient
solar power with peak energy prices. The energy management software may also reduce energy
consumption at peak energy price times to sell electricity back to the grid. This is the underlying
reason proactive building energy management systems are useful.

A significant amount of literature has been published on the development of efficient and
accurate forecasting algorithms [21]. Bilbao et al. present a machine-learning (ML) based re-
gression forecasting method using an artificial neural network (ANN) with Bayesian regulation
back-propagation and test this method on a building at the University of New South Wales [22].
Daut et al. use a hybrid swarm intelligence algorithm and support vector machine to achieve supe-

rior-performance.for building electrical energy consumption forecasting [23]. Deb et al. perform

4
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a review on time series energy consumption forecasting for building energy optimization by com-
paring methods based on historical data (black box) to those based on first-principles simulation
(white box) [24]. Tanveer et al. and Wei et al. both review data-driven methods for prediction of
large scale building energy consumption with a focus on artificial neural networks, clustering, and
support vector machines [4,25]. Wang et al. review artificial intelligence methods for building
energy prediction with an emphasis on the difference between single and ensemble methods [26].
Foucquier et al. review first-principles physics based building modeling and energy performance
predictions [27]. Amasyali et al. review building energy consumption prediction methods with a
focus on data pre-processing, data processing, and prediction itself [28]. Fumo et al. provide an
overview of prediction models which work with entire building energy simulation software pack-
ages [29]. Lazos et al. review common forecasting methods, discussing the difference between the
short prediction horizons typical of statistical or data-driven methods compared to the longer time

horizons typical of physics-based methods [30].

1.4 Model Predictive Control in Building Energy Management

Although many control strategies are employed for proactive energy management of build-
ing energy systems, this work’s scope is limited to MPC. MPC is a well-known control method
which utilizes a process model to predict future values given a set of control moves over a fu-
ture time horizon. The set of control moves over the future horizon is optimized using dynamic
optimization methods which are well-documented in literature [31,32]. When integrated with fore-
casting, dynamic optimization allows the control strategy to proactively mitigate for disturbances
prior to their occurrence when they are predicted to occur during the future time horizon. MPC
for building energy optimization has been an active topic for several decades, with multiple review
articles written on the topic [33-36]. One important aspect of MPC is the model used for optimiza-
tion and prediction. Model complexity has a significant impact on computational power and time
required to solve the dynamic optimization problem, sometimes making on-line implementation
of the control strategy infeasible. Several articles identify methodologies to reduce computational
complexity of the building energy MPC problem. Picard et al. present a linear time invariant
(LTT) state space model for the problem which allows the model complexity to be decoupled from

the required.computational-time, although at the expense of system nonlinearities [37]. Ruiz et al.

5

www.manaraa.com



introduce a genetic algorithm (NGSA-II) as an optimization method in an effort to reduce the com-
putational burden of the problem [38]. Sangi et al. suggest a model based on exergy (usable work)
rather than on energy consumption and an agent-based hybrid model predictive controller [39].
Santoro et al. introduce a nonlinear model predictive control (NMPC) formulation with a nonlin-
ear model] to describe the building system [40].

Another important aspect of MPC in relation to building energy optimization and grid sta-
bilization is the integration of energy storage such as thermal energy storage (TES) and batteries.
Yu et al. conduct a comprehensive review of control strategies to integrate thermal energy stor-
age to shift peak load and allow for greater renewable energy penetration in the grid, including an
overview of MPC’s space [33]. Khakimova et al. present a method for utilizing MPC on a smart
house equipped with photovoltaic (PV) power, thermal energy storage, and an HVAC system with
the objective to minimize energy purchased from the grid [41]. Multiple objectives also commonly
exist in building energy optimization as occupant thermal comfort and energy efficiency are typ-
ically conflicting objectives. This concern is inherently covered in all works in this space, but is
more explicitly addressed by Ascione et al. [42]. Ascione et al. use a multi-objective dynamic
optimization with a genetic algorithm, hourly set-points, and weather and occupancy forecasts to
generate a Pareto front from which the user chooses an optimal solution based on comfort and
efficiency preferences. Oldewurtel et al. developed a MPC framework for integrated room au-
tomation to control thermal comfort, maximize energy efficiency, as well as control luminance
and room carbon dioxide levels [43]. Touretzky tackle the issue of time-scales by implementing a
long-time scale HVAC scheduling formulation with forecasts and a short-time scale model predic-
tive controller to meet the proactive schedule [44]. Touretzky et al. introduce an economic MPC
formulation for an overall economic objective in the same work. Afram et al. provides a review
of for building energy optimization, addressing differences among literature in many aspects of
MPC [34]. Killian et al. provide answers to many practical and technical questions regarding

MPC for building energy optimization [35].

1.5 Accounting for Forecast Uncertainty and System Disturbances

MPC provides an effective means for proactive control and optimization of building HVAC

systems.to-reduce-energy-consumption and maximize efficiency, all while enhancing grid stabi-

6
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lization. However, energy consumption and weather forecasts which allow for effective predictive
and proactive control are often inaccurate, which leads to sub-optimal control [24,45,46]. In ad-
dition to uncertainty in building energy forecasts and weather forecasts, system disturbances can
occur which could be unpredicted by the proactive controller [47]. There have been many meth-
ods presented to deal with these issues in the academic literature. Santoro et al. introduce system
disturbances and model mismatch into their simulations with NMPC of a building energy sys-
tem, accounting for uncertainty in model mismatch and demonstrating robust performance [40].
Oldewurtel et al. present a stochastic model predictive control (SMPC) approach to account for
uncertainty in weather forecasts which outperforms the control in their study [43]. Vahid-Pakdel
et al. use a stochastic mixed-integer linear programming (MILP) methodology to account for un-
certainties such as in demands, prices, and wind speed in a smart grid optimization, reducing costs
by 5% [48]. Kim et al. use adaptive MPC and multiple distributed simple system models to both
alleviate computational burden and address system disturbances in building energy control [47].
Zhang et al. introduce randomized model predictive control (RMPC) which samples multiple pos-
sible scenarios within an uncertainty window to implement stochastic methods in the absence of
a probabilistic disturbance model [49]. Kwak et al. introduce methods to incorporate real-time
weather data and building energy consumption data into MPC to mitigate error due to uncertainty
and inaccuracy in forecasts [46,50]. Ebrahimpour and Santoro develop a methodology for utiliz-
ing MHE in conjunction with MPC with a simplified model to account for uncertainties and model
measurement mismatch due to load and occupancy [51]. In this work we present a methodology
to utilize MHE to incorporate real-time weather and building energy consumption data into MPC

via dynamic parameter estimation.

1.6 Contributions

The novel contributions of this work include the following:

1. A home energy management system (HEMS) that uses a combined MHE and MPC approach
that estimates residential home building parameters and optimizes home energy in real-time.

Mathematical building models are often very complicated and computationally expensive.
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This work overcomes this obstacle by using a lumped parameter model that is adapted to fit

a high-fidelity model.

2. A hybrid approach manages the on/off behavior of air conditioners as a continuous function
using a mathematical program with complementarity constraints (MPCC). Discrete variables
increase the number of potential solutions which require more computation resources and
time. By using MPCC’s, the discrete behaviors are converted into a continuous function that

is solved with continuous optimization.

3. A combined renewable energy, energy storage, forecasts, cooling system, variable rate elec-
tricity plan, and multi-objective function residential house model is presented and tested on
a simulated home in Phoenix, Arizona. This combination includes all major energy flows
within a home as well as important outside disturbances. Accounting for these factors allows
for a complete home energy optimization assessment with controlled conditions to assess the

potential benefit from the HEMS approach.

This work provides a framework to develop and optimize a HEMS with forecasting. Figure
1.1 shows how each of the individual components fit together to form the complete HEMS frame-
work. The process begins with simulated home data. This data is sent to the MHE application
where the home parameters values are estimated. Simulation data is also sent to the forecasting
models where future values are predicted. The home parameters and future predictions are sent
to the MPC application where climate control, battery usage, and energy flows in the home are
optimized. Optimized decisions are sent back to the simulation and implemented into the HEMS.
This cycles repeats every 10 minutes to allow time for the optimizer to converge to a solution.

This work is useful to researchers and HEMS developers interested in home modeling, au-
tomation, forecasting, and energy usage optimization. The following sections of the paper describe
the methods used to model and optimize homes using the energy management software. The con-
cluding sections quantify and discuss the effect of implementing the optimization software. They
also provide suggestions to improve and continue the work discussed in this paper. Appendix A,

B, and C include the source code required to run the HEMS and simulation.
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CHAPTER 2. THEORY AND METHODS USED IN DEVELOPING ENERGY MAN-
AGEMENT SOFTWARE

2.1 Methods

This chapter discusses the reduced-order and EnergyPlus models, HVAC thermal and elec-
trical systems, and weather forecast models. It also describes the mathematical formulation of
MHE and MPC methods used. Lastly, the results of the MHE and MPC applications are included

and discussed.

2.2 Theory/Overview

A simulator is used to allow practical and efficient software testing. EnergyPlus is a
console-based program funded by the Department of Energy (DOE). Energy is used to simulate
whole building energy systems and allows users to completely customize the building parame-
ters. EnergyPlus provides energy consumption data for the whole home including lights, plugs,
appliances, heating and cooling. EnergyPlus also allows users to manipulate time step resolution,
HVAC configurations, heat transfer calculation strategies, etc. Using the data from the simulator,
an MHE is used to fit parameters in a heat transfer equation that makes a correlation between ambi-
ent temperature and the inside home temperature. This correlation is then combined with forecasts
to optimize home energy flows by manipultating variables such as temperature set-points. In ad-
dition to changing the home temperature set-points, the controller makes decisions on whether to
charge or discharge a battery used for energy storage and whether to buy or sell electricity to the
grid. These decisions are determined by minimizing the total cost of the energy system. Profits
can be gained at individual time steps if net metering is available and there is an excess amount of
energy in the home system. Ultimately, the solver is minimizing and shifting energy loads which

results in minimizing energy costs when properly utilizing variable rate pricing structures.

10
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2.3 Simulation

Figure 2.1 shows the results of an example simulation in EnergyPlus. The blue line is the
amount of electricity used by the HVAC system to cool the house and the red line is the ambient
temperature outside of the home. A correlation is seen between the ambient temperature and the

energy required by the HVAC system.

5000 50
—— HVAC Power (W) —— Drybulb Temp (C)
4000 - L 40
2 3000 r308
g o
b} 2
3 e
> [
= Q
S g
= ]
] -
o 2
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Q 3
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0 : . . . . 0
al uv\‘\ %‘ﬁ < vq\‘\ %QV\ & uv\‘\ %v“\ 'LQV\ bfz\‘\ & u‘ﬁ Gl uq\‘\ &
NGRS NN RN N S AR\ S N R R NGNS
Time

Figure 2.1: Simulation Test Results

As discussed in the introduction, air conditioning units are one of the main electricity-
demand contributors. As a result, the initial focus is to build an energy management software that

encapsulates the correlation seen in Figure 2.1 to reduce electricity costs. Summer months have

11
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the highest cooling demand and have the highest potential to improve energy usage. Consequently,

this work focuses on optimization during summer months.

2.4 Building House Model

2.4.1 Initial Model

An accurate house model is needed to optimize the energy usage. A reduced first principles
based model is developed to accurately model the thermodynamics of the house. The basis of the

house model is derived from the total energy equation shown in Equation 2.1.

5 (3p+p0) == (v+(3p24p0)0) = (V0= (Vop) - (Ve 4p (o) @21

One of the main goals of this work is to develop a model that is accurate but also simple.
Although Equation 2.1 does not include nuclear, radiative, electromagnetic, or chemical forms
of energy, it is still too complex to be optimized efficiently in a real time HEMS. Equation 2.1
is simplified with a few assumptions. The first assumption is that energy transfer is dominated
by convective and conductive heat transfer. This assumption eliminates the last three terms of
Equation 2.1. The next assumption is that there is no mechanical energy transfer. This assumption
eliminates % pv? from the Equation 2.1. With these two assumptions the model is reduced down to

Equation 2.2.

d .
S pl=—(V-p0v) ~(V-q) (22)

Equation 2.2 is a simplified version of the total energy balance and contains the information
needed for an effective house model. Next, it is helpful to switch Equation 2.2 from the internal
energy form to a temperature form. This is done by first converting internal energy to enthalpy and

then enthalpy to a function of temperature. The resulting equation is shown in Equation 2.3.

. kA
VpC,— = (hAmv— 20"”’ ) AT (2.3)

12
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The final transformation to the energy balance is to lump the parameters together. Param-
eter lumping is helpful in simplifying a model because one parameter contains the information
of many constant values instead of estimating each one individually. This concept is particularly
helpful when estimating parameter values in an MHE application because it simplifies the solution
and also decreases the degrees of freedom. Equation 2.4 shows the final lumped parameter house
model which closely resembles Newton’s Law of Cooling. Equation 2.5 shows how the parameters

are lumped.

= AAT (2.4)

A= B (2.5)

Equation 2.4 is now applied specifically to the HEMS. The goal is to have a mathematical
relationship between the outside temperature and the temperature of the air inside the home. To
achieve this relationship, the house is divided into parts. These parts include, the outside surface
of the wall, the inside surface of the wall, and the air contained in the home itself. This is done
because the transfer of energy and heat capacitance of these sections are different and must be
separated to model the home accurately. Figure 2.2 shows a diagram of how the house is divided

into different parts.

Tair,ambient

Twa ll,outside

Twall,inside

T,

air,inside

I |

Figure 2.2: Diagram of the Lumped Parameter Home Model
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The first part of the energy balance is the heat transfer through the outer wall which is
represented by Equation 2.6. This equation is displayed in the same order as the generic balance
equation seen in Equation 2.2. The left side of Equation 2.6 is the accumulation of total energy
contained in the outer wall. The parameter A contains information about the density, heat capacity,
and area of the outer wall. This value is estimated so the exact values of density, heat capacity, and
area are not needed. The accumulation term also contains the time differential of the outside wall
temperature. This allows the model to adjust for changes in the total energy in the outer wall over
time. The right side of Equation 2.6 contains terms that account for the input and output flows to
and from the outside wall. The first term is the flow of energy by convection due to the ambient
temperature around the outside of the home. The second term is the flow of convection due to the
inner wall temperature. If the difference in temperatures is positive, it means the energy is flowing

into the home and vice versa for a negative difference.

dTwall,outer

A dt =B (Twall,outer - Tair,ambient) -C (Twall,ouler - Twall.,inner) (2.6)

Equation 2.7 describes the energy balance around the inner wall. The concepts are the same
as the outer wall. Energy flows in and out by convection from the outer wall and the air inside the

home.

dTwa.i
D wallinner
dt

=E (Twall,inner - Twall,auter) —F (Twall,inner - Tair,inside) (2.7)

Finally, the energy balance of the air inside the home needs to be developed. As before,
there is a convection term that describes the energy flow between the inner wall and the air inside
the home. Equation 2.8 includes a new term, Qgyac, which is the amount of energy flow from
the HVAC system. Qpyac is positive for an air-conditioner and negative for a furnace or heater.

Lastly, HVACj o is whether the HVAC system is on or off. This is a binary variable represented as

aQoral.

GdTaininside

dt =H (Tair,inside - Twall,inner) — OQnvac (HVACI/O) (2.8)

Equations 2.6 - 2.8 combine to form a reduced-order model capable of representing the

principle temperature.dynamics of the home. The energy balances neglect radiation and conduc-
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tion influences. These are negligible compared to convection at ambient temperatures so they are

eliminated from the energy balance.

2.4.2 Improved Model

A deficiency in the lumped parameter model described by Equations 2.6 - 2.8 is exposed
when testing with the EnergyPlus simulator. The lumped parameter model above fits the house data
well when the air conditioner is only on for short periods of time, but fails to capture the correct
behavior if the air conditioner is on for extended periods. As a result, the optimizer is unable to
predict the temperature of the home appropriately and a new model is developed.

The energy balance described in Equation 2.2 still holds true, but the model is augmented.

The augmented model equations are shown below in Equations 2.9 and 2.10.

AT iy insid
% =A (Tambient - Tair,inside) +B (Tground - Tair,inside) -C (HVACI/O) -D (HVACStatus)
(2.9)
dHVAC]/O
— HVACs414s (2.10)

Two major additions are incorporated in this model which are the heat transfer effects
of the ground temperature and an additional term for the HVAC system. The ground temperature
influence is added because it improved the model accuracy when applying it to a variety of different
climates.

The last term of Equation 2.9 is what ultimately improved the model. Equation 2.10 shows
that HVACs;q,5 1s just the change in HVAC, /0 This allows the model to track what state the
HVAC system is in. For example, when the air conditioner turns on, the status goes from 0 to 1
and results in a HVACg 4, value of 1. On the other hand, if the air conditioner turns off, then the
status goes from 1 to 0 and results in a HVACs;q,s value of -1. This is important to capture in the
model because HVAC systems have different behaviors when the system turns on, has been on for a
period of time, and turns off. With the combination of the terms C(HVAC; () and D(HVACsaus)

the house model accurately represent these effects.
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Figure 2.3 shows the results of the change. The first subplot shows the original model. This

model was developed when the air conditioner status was changed rapidly in a cyclic manner. This

subplot shows the result when the status is more variable. There is significant deviation from the

actual data even though the model seems to match the points of inflection. The second subplot

of Figure 2.3 shows the results of the improved model. The fit is not perfect but does match the

data closer than the original model. These subplots show that the improvement was critical to the

success of the HEMS because the optimizer will not likely provide a cyclic solution.
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Figure 2.3: Original Model vs. Improved Model

It is important to notice that the number of balance equations in the previous model is re-

duced from three down to one. The addition of Equation 2.10 complicates the model and increases

the time to converge. This complication arises because the model is discretized over a long time

horizon and is non-linear. To maintain fast and reliable solutions, the energy balance equations

for T3pai inner a0d Toya11 ourer are removed by setting the inner wall, outer wall, and inside air tem-

perature equal. The results and comparison of the models are discussed in more detail in further

sections.
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2.5 Air Conditioner Load Model

Another aspect of the system that needs to be modeled is the air conditioner load. Although
the air conditioners used in this work are On/Off, power consumption varies based on the efficiency
of the unit. This efficiency is a function of many external influences such as humidity, temperature,
age of the unit, and so on. Through careful consideration of many of these influences, the ambient
air temperature is found to have a dominating impact on the efficiency and that the other effects
are negligible. As a result, Equation 2.11 is developed to model the load of the air conditioner unit.
The constant A is obtained by using MHE. Figure 2.4 shows the accuracy of the model which has

an average R’ value greater than .99.

HVACjpaq = A HVACI/O Tainambient (2.11)

6000 A

—— Predicted load
Actual load ,\\ /V_\

500019 A

\_ A

4000 +

(W)
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Air conditioner load
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Figure 2.4: Actual vs. Predicted for Air Conditioner Load

This is a crucial addition because it allows the optimization algorithm to perform better

than.if a.constant.load.is-assumed. This is especially true because the efficiency is worse during
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the middle of the day and results in a higher load as shown below in Figure 2.4. This is commonly
when air conditioners are on and when energy prices are at their highest. Having a model that

explains these trends is essential to finding the true optimum.

2.6 Battery Model

Energy storage supplements a HEMS. Having the ability to store and use energy at different
times then when it is produced allows MPC to have more degrees of freedom to optimize the energy
system. To be able to do this, an accurate battery model is needed so that the system can anticipate
storage usage and efficiency.

The model used in this work is a commercial home energy storage battery system as seen in
Table 2.2. Equations 2.12 - 2.13 convert the total battery unit into a system of lithium-ion battery

cells. The individual lithium-ion cell properties are found in Table 2.2.

V v
N_Cellsgyyips = 2001 (2.12)
Vcell
Qbattery
N_Cells payapie = 20 (2.13)
chll

Equations 2.14 - 2.18 are the remainder of the battery model equations. The first equation
calculates the power going into or out of the battery after accounting for AC to DC, or DC to
AC inversion losses. Equations 2.15 and 2.16 convert the power into the current in or out of the

individual battery cells. Equations 2.17 and 2.18 track the battery state of charge (SOC).

Pinv == in/ouz inveff (2 14)
P.
Ibattery = = (215)
Vbattery
Ibattery
Lee1 = 57— 2.16

cell Nfcellsparallel ( )

dQdischarged
e = een 2.17)
SO Cbattery _ Qbattery - Qdischarged ( 2] 8)

Qbattery
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Table 2.1: Battery Model Nomenclature

Symbol Description

Dpattery Current In/Out of Battery
Leeil Current In/Out of Cell
N Cellspgraiier | Number of Cells in parallel
N_Cellsgories Number of Cells in Series
Piny DC Power

inVers Efficiency of the Inverter
P our AC Power

Voattery Battery Voltage

Vel Cell Voltage
Qudischarged Cell capacity discharged
Ovartery Battery capacity

Ocell Cell capacity
SOCartery State of Charge of the Battery

The combination of Equations 2.12 - 2.18 allows the MPC to optimally select energy stor-

age and discharge.

Table 2.2: Commercial Home Energy Storage and
Lithium-ion cell specifications

Property Value
Battery Voltage 50V
Battery Usable Capacity 13.5 kWh
Round Trip Efficiency 90%
Maximum charge/discharge Power SkW
Lithium-ion Cell Capacity 1 Ah
Lithium-ion Cell Voltage 3.6V
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2.7 Ambient Temperature Prediction Model

The most important forecast variable is the ambient temperature. This is due to the major
effect on the heat transfer to the home, and consequently, the power needed to keep the home
within a comfortable range of temperatures. If ambient temperatures are predicted, the house
model described above predicts when the air conditioner needs to run. The MPC optimizes the
start time and duration of cooling load. Bad predictions cause bad solutions, even solutions that
can have worse effects than no optimization at all.

This work uses an empirical forecasting model. One reason for choosing an empirical
model is that weather data is widely collected and recorded which provides large data sets to train
and validate a model. The data used for training the models in this work are from multiple years
and only includes summer months. A forecast model is created for every time point in the MPC
horizon. For example, if the MPC is optimizing a point 12 hours in the future, there is a model
developed specifically for predicting the ambient temperature 12 hours in the future. This is found
to be most effective because the data used to train the model had varying influences. For exam-
ple, if the ambient temperature ten minutes from now is predicted, then the p-values for the data
within the last hour are found to be the only statistically significant variables. However, 24 hour
predictions require the use of a model that contains temperature data from hours to several days in
the past according to the variable p-values in the regression model. The models for predicting the
temperature 10 minutes and 24 hours ahead are discussed in more detail below. Other models are
developed for each of the remaining MPC horizon points, but they are not included because the
results are similar to the 10 minute and 24 hour models.

24
Tatyure = Intercept + Z o; Ta; + Z Bi Hr; (2.19)
i i

The general form of the models is seen in Equation 2.19 as a time series model. The inputs
to the model are Ta which is an array of historical temperature data and Hr which is an array to
indicate the hour of the day corresponding to the point being predicted. As mentioned above, the
historical data is reduced down to the data that best captures the trends. This process is done by

keeping the variables with significant p-values. The historical data array varies in size depending
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on how many parameters are found to be significant. The parameters are fit using linear regression
in Python with the scipy.minimize package.

Figure 2.5 shows the actual value versus the predicted value for ambient temperature 10
minutes ahead. The R? value is greater than 0.99 and the root mean square error is 0.0499. An
accurate 10 minute forecast is important for near-term directional weather predictions, but does
not give the optimizer enough data about the system to be able store energy hours in advance if
needed. The longer predictions are more critical for exploiting time-of-day pricing and making

long-term proactive decisions.

predicted points
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Actual Ambient Temperature (C)

Figure 2.5: Actual vs. Predicted for Ambient Temperature 10 minutes ahead
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Figure 2.6 shows the result of the model that predicts temperature 24 hours in the future.
The fit matches the model well with an R? value of 0.85 and a root mean square error of 1.845.
These values along with Figure 2.6 indicate that the model is valid and can be used for optimization.
It is important to notice that predictions are more uncertain further into the future as explained by

the figures and statistical values.
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Figure 2.6: Actual vs. Predicted for Ambient Temperature 24 hours ahead

These models are used to send forecasting data to the MPC application. Using accurate

models allows the MPC application to better predict the status of the home in the future and al-
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lows the optimizer to proactively manage the energy flows to accommodate changes in ambient

temperature.

2.8 Miscellaneous Building Power Prediction Model

Another important process variable to predict is the miscellaneous building power require-
ment. Miscellaneous building power is a variable inside EnergyPlus that accounts for all of the
building power usage minus what is needed for the HVAC system. This includes the power used
by lights, appliances, and electronics plugged into outlets. Although the individual components
mentioned may have very sporadic usage and trends, the combination of all of them into one vari-
able stabilizes the dynamics into repetitive trends. It is important to be able to predict this value
because it has an impact on the energy demand of the home at different times throughout the day
and affects how the HEMS optimizes the energy flow in the home.

An empirical model is fit to EnergyPlus simulation data which provide large data sets that
are used to train and validate the model. As with the ambient temperature forecasting, a model
is created for each time-step of the MPC application. The general model equations are also very

similar to Equation 2.19, but with one major difference as shown in Equation 2.20.

24
Emisc fyryre = Intercept + Emisceyrrent + Z o; Hr; (2.20)
i

Instead of using historical data to predict the future value, the model only uses the current miscel-
laneous power value and the hour indicator value. These are determined by examining the p-values
associated to each variable included in the historical data sets and only keeping ones that are sta-
tistically significant. The prediction model for predicting 10 minutes and 24 hours in advance are
discussed in greater detail below.

The results for the 10 minutes ahead model are seen in Figure 2.7. The majority of the
points are close to the identity line, but there are a few outliers. This is explained by the sporadic
use of appliances and outlets. The fit has an R? value of 0.948 and a root mean square error of 57.7
Watts. This indicates that the fit does well at representing the majority of data but some of the data
points deviate from the model fit. Air conditioning loads are around 5,000 to 7,000 Watts so a root

mean square error of 57.7 Watts has a negligible effect on the overall optimization.
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Figure 2.7: Actual vs. Predicted for Misc. Building Power 10 minutes ahead

The results of the model predicting 24 hours in advance are shown below in Figure 2.8.
The fit has an R? value of 0.885 and a root mean square error of 86.1. Both values are worse
compared to the 10 minutes ahead model. This is most likely explained because the model has to
extrapolate further from the training data. An interesting observation to make is that there are a
large number of outliers below the identity line, indicating that those points in the model under-
predict the amount of power usage. This negatively affects the HEMS because it does not account
for the correct amount of energy consumption at those time steps which results in model mismatch.

Model mismatch leads to sub optimal solutions and reduced cost savings.
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Figure 2.8: Actual vs. Predicted for Misc. Building Power 24 hours ahead

The models discussed above allow the MPC application to gain information about outlet
and appliance power usage. The MPC is able to make informed decisions based off of these energy

flows and is able to more fully optimize the system.

2.9 Solar Power Production Prediction Model

Solar Power production varies in magnitude and timing throughout the day. The power
production is largely influenced by the size of generation system and the time of day. Properly
sized equipment has the potential to eliminate the need to buy electricity from the grid if managed

crucial that this variable is predicted as accurately as possible to
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enable maximum energy management benefits. The models created in this work are empirical
models trained and validated by EnergyPlus simulation data. The general model equation takes a
similar form to the ambient temperature model. The general model equation is seen in Equation
2.21.

24
Psolar pypure = Y P0G Hr; (2.21)
i
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Figure 2.9: Actual vs. Predicted for Solar Power Production 10 minutes ahead

The major difference between the solar power production model and the ambient temper-

ature.model is.the historical data inputs. Solar power production relies on the surface area of the
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solar panels and the amount of solar energy. In this work the solar generation system size is a con-
stant. The amount of light received from the sun varies but follows a diurnal trend. As a result, the
model equation only needs the time of day to efficiently predict the maximum amount of generated
power. This conclusion is also confirmed by looking at the p-values of each potential parameter
used to train the regression model. The prediction results for ten minute and twenty-four hour

forecasts are discussed in detail below.
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Figure 2.10: Actual vs. Predicted for Solar Power Production 24 hours ahead
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Figure 2.9 shows the result of the model fit for the 10 minutes ahead predictions. The fit
has an R? value greater than .99 and a root mean square error of 33.5 W. The R” value and the
graphical fit in Figure 2.9 indicate a good model fit.

The results of the model predicting 24 hours in advance are shown in Figure 2.10. These
results have an R? value of .978 and a root mean square error of 183.4 Watts. Compared to the
10 min ahead model, this fit is worse and has a larger spread from the actual values. This is due
to the outliers seen in Figure 2.10. This model is trained on more than 54,000 data points and the
majority of the points lie along the line which give the high R? but the increased number of outliers
cause a larger root mean square error. As with the other prediction models, this is explained by the
predicted points being extrapolated further away from the training data.

The models developed for predicting solar power production are simple in that they only
have one variable but they fit the data well based off of the statistical values and graphical fit. The
MPC application uses these predictions to proactively reduce or shift energy flows to maintain

home temperature comfort and lower energy costs.

2.10 Moving Horizon Estimation and Model Predictive Control Theory

MHE is an established parameter estimation method that utilizes dynamic optimization
over a fixed time horizon of recent measurements to regress current model parameters [31]. This
work utilizes the GEKKO optimization suite [32] for MHE to regress system parameters. Two
common MHE objective function forms are the least squares objective and /;-norm objective. The
least squares objective is influenced by bad data and outliers. The home system may experience
issues with the sensors or incorrect data recording so the /{-norm objective is used instead to
improve parameters estimates while eliminating outliers and measurement noise [31]. The general
form of the MHE /{-norm objective is shown in Equations 2.22 - 2.30. The nomenclature for
these equations are listed in Table 2.3. The /;-norm objective uses a dead-band to avoid over-
fitting the parameters to noise. The /{-norm objective also has other benefits such as a penalty for
manipulating parameters when there is little or no benefit. MHE only adjusts the model parameters
if they are outside of the dead-band. This is particularly helpful if a system is at a steady state,

when the parameters are weakly observable, or when there is no information content in the data
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that would necessitate a parameter adjustment.

mmd D =W (ey+er)+ WPT(CU +c1)+ApTeap
Xy,

st. 0= f( xy,p,du)

0=g(x,y,p,d,u)
0 < h(x,y,p,d,u)

. T T T T T
mmd D =wyep+we+y cytu o+ Au cpy
x7y7p7

st. 0= f( xy,p,du)

0=g(x,y,p,d,u)
0 < h(x,y,p,d,u)

dyh
é I-Fyzhz SPhi

dyt lo
dt

+yt lo = SPlo
€ni =Y — V.hi

€lo = Vijo—Y

(2.22)

(2.23)
(2.24)
(2.25)
(2.26)
(2.27)

(2.28)
(2.29)
(2.30)

(2.31)

(2.32)
(2.33)
(2.34)
(2.35)
(2.36)

(2.37)
(2.38)

MHE is often utilized in conjunction with MPC, which uses the current system parameters re-

gressed by MHE to predict future values given a set of control moves [31]. Dynamic Optimiza-

tion, MPC, and MHE have wide application across a broad range of industries including continuous

chemical process optimization [52-54], cryogenic carbon capture [55-59], energy system capacity
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planning [60], and drilling automation [61-63]. The optimal control over the future prediction
horizon is determined by dynamic optimization. This work utilizes a MHE to determine current
building model parameters to use with MPC. In conjunction with weather forecasting, the estima-
tion provides a higher level of accuracy in the predictive control and is a contribution of this work.
While these approaches are not individually new, the combination of all elements in a real-time

demonstration with a high-fidelity simulator is novel.

Table 2.3: Objective Function Terms from [31] for MHE and MPC

Symbol Description

o> objective function

Vi measurements (Vy0,--,Yzn)!

y model values(yo, ..., y,)"

Wi, Wiy measurement deviation penalty

wp, W, penalty from the prior solution

CAp penalty from the prior parameter values

db dead-band for noise rejection

x,u,p,d states (x), inputs (u), parameters (p), or disturbances (d)
Ap change in parameters

f,8h equation residuals, output fraction, and inequality constraints
ev,er slack variable above and below dead-band measurement
cU,CL slack variable above and below a previous model value
Vs Yt.his Vi lo desired trajectory target or dead-band

Wi, Wi, penalty outside trajectory dead-band

Cys Cus CAu cost of y, u and Au, respectively

Te time constant of desired controlled variable response
€lo, Chi slack variable below or above the trajectory dead-band
Sp,Spio,Spni | target, lower, and upper bounds to final set point dead-band
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Model predictive control seeks to optimize an objective such as minimizing energy con-
sumption or maximizing profit by manipulating controllable system variables at discrete time
points in a future time horizon. Dynamic optimization uses a system model, which in this work
is an online MHE model. The MPC application in this work uses the control /;-norm objective
function. The /;-norm objective form is seen in Equations 2.31 - 2.38. Terms in these equations
are listed in Table 2.3. The control /;-norm objective shares many benefits as discussed above in
the MHE /;-norm discussion. The major difference is that instead of bad data and outlier rejection,
the objective form is able to add priority to different objective functions. This permits multiple
objectives which are solved simultaneously in one optimization problem. That is essential for this

work because cost and comfort are both objectives and are prioritized with a hierarchy.

2.11 Moving Horizon Estimation with Lumped Parameters

A MHE is used to calculate the model parameters for the home. MHE is used because the
model is updated to available data and accounts for changes made to the home. MHE optimally
adjusts a model to align with data, but has not been commonly implemented in the process of
modeling and optimizing in HEMS. Most home models involve complex systems of equations or
complex models that have been trained on large data sets. Those models are often accurate, but
require substantial computational time to develop and solve. This is a major constraint for HEMS
and is why this work focuses on simplifying the model so that it can be manipulated and solved in
real-time while maintaining as much accuracy as possible. The model equations are listed above
in section 2.4.

The MHE horizon is 36 hours long with a one minute time step. This allows the estimator
to fit the model to trends that happen daily while also capturing the short-term dynamics of heat
transfer through the walls.

Figure 2.11 shows the MHE solution of the system when the MPC is not active. Values for
Toir.ambient» Tairinside- and Qgyac are obtained from the EnergyPlus simulator. During this period of
time, a thermostat is controlling the temperature with a dead-band. If the temperature goes above
the set-point, the air conditioner turns on until it reaches the lower set-point and turns off. This

explains the cyclic behavior seen in Figure 2.11.
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Figure 2.11: MHE results during typical temperature control scheme

The subplot on the top displays the temperatures of the ambient air, set-points, the air
inside the home, and the predicted temperature from the MHE model. The second subplot displays
when the air conditioner is on or off and the power consumption of the air conditioner. This plot
shows that the MHE predictions are correct in matching the actual indoor temperature. This model
accuracy is essential for the rest of the energy management software because the air conditioner
has such a large influence on power consumption.

As discussed in the building house model section, the original model does not extrapolate
when the air conditioner is on for longer periods of time. Consequently, a new model is created
based off of the same principles as the initial model but with extra terms added to account for
model mismatch error. These new terms account for the heat transfer from the ground and the air
conditioner on/off status changes. The results of the improved model are shown in Figure 2.12.

The model fit is less exact compared to the first, however, it is able to represent the air
conditioning system within a reasonable amount of error. The simulation results in Figure 2.12
are less cyclic and show the air conditioner behavior outside of the normal cooling cycles. This
development is important for the HEMS because there are times where it is beneficial to keep the

air conditioner on for extended periods and break the cyclic behavior.
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Figure 2.12: MHE results during complex simulation

One of the benefits of MHE is that when new data is available, the solution time shifts to the
next solve time and uses the previous solution to initialize the next solve (i.e. Bayesian approach).
This allows the system to be updated continuously while also keeping the solve times short which
has been a significant barrier in the HEMS research.

Another important factor in keeping the solution times short is the use of scaling in the
solver. Scaling is crucial when solving this model because the magnitudes of the parameters differ

on the magnitude of 1e7 or greater. This causes the solver to take longer to converge and potentially

fail.

2.12 Model Predictive Controller with Forecasts

MPC is used to optimize and make changes to the system. MPC has been used in HEMS
before, but hasn’t included the combination of weather forecasts, market forecasts, and an eco-
nomic objective function while also being solved in synchronization with an MHE application.
Due to the simplicity of the MHE model described above, the MPC model consequently remains
simple. This is important because, as stated earlier, models used in HEMS can be very complex

and.cam-require-long.computational times to solve.
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One of the first things to consider when building an MPC application is the horizon length.
In this work, a horizon length of 24 hours is chosen. A horizon of this length allows the optimizer
to more efficiently react to changes in ambient temperature, solar power production, changes in
electricity prices, and captures one full diurnal cycle.

An additional part of the MPC is the home air conditioning model. Section 2.4 discusses the
home model equations and Section 2.11 discusses the estimation of the home model parameters.
Together these combine to form the complete home model which is used in the MPC. Every time
the MPC solves, the new parameter solutions from the MHE are sent to the MPC to update the
model. This updated model is important for a successful MPC because it allows the controller
to know how the ambient temperature and air conditioner affect the temperature inside the home.
These relationships also allow the MPC to implement comfort into the objective function. This
is accomplished by setting high and low temperature set-points. The priority of this objective
function is manipulated to achieve different results. If the priority is high, then the comfort is
be the main goal of the optimizer. However, if the priority is reduced, then the optimizer makes
trade-offs between saving money and reducing the occupants comfort.

Another aspect of building the MPC model is the air conditioner on/off behavior. Most air
conditioners have set speeds. For example, a one-speed air conditioner is only on or off. Adding
a discrete on off variable is difficult to optimize because it is a non-continuous function which is
hard for solvers to handle and are computationally expensive. Even with these drawbacks, it is
crucial that the MPC model follows the on off behavior as closely as possible. In an effort to avoid
discrete variables, a hybrid approach is used in this study.

The key to the hybrid approach is to keep the HVACy ) variable continuous, but to force it
to either be one or zero. Equation 2.39 and Figure 2.13 show a function that achieves this goal. In
the equation, the parameter A is be adjusted to change the height of the parabola. In Figure 2.13,
several different values of A are plotted. As A decreases, the height of the parabola decreases as
well. This is important because Equation 2.39 is setting this function to be less than or equal to
zero. With HVACy , being bounded at zero and one, this expression is only valid when HVACj
equals zero or one and therefore, giving us the discrete-like behavior needed. As a result, if A is too
large, then the height of the parabola is too high and the optimizer gets stuck at the value of zero

or one. Alternatively, if A is too low, then the function fails to constrain HVAC; /o and it is allowed
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to be any value between one and zero. A is consequently optimized to be at the value where it

constrains HVAC  to zero or one and so that optimizer effectively explores the design space.

2 A
0> —A (HVAC;/o—0.5)"+ 1 (2.39)
0.25
0.20
0.15
>

0.10 A
0.05

—— y= —1.0*(HVACj0—0.5)2 +12

—— y=—0.5%(HVACyp — 0.5)2 + %3
0.00 4 2,01

—— y=—0.1%(HVACyo— 0.5)2 + %1

0.0 0.2 04 0.6 0.8 1.0

Air Conditioner Status (0 = off, 1= On)

Figure 2.13: Air Conditioning Function

In the process of developing the above function, the first idea explored was to add the con-
straint into the objective function so that the right side of Equation 2.39 would be minimized in the
objective function. This minimized the function successfully, but dominated the other objectives

ed the results to be sub optimal with respect to optimal energy con-
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sumption. As a result, Equation 2.39 was developed to use MPCC’s which achieves the same goal
without affecting the comfort and economic objective functions.

The next component of the MPC is the battery model. The battery model is discussed in
greater detail in Section 2.6. This battery model is used in MPC for several reasons. The first
is that the battery model is continuous and continuously differentiable. Battery models are often
undefined when the state of charge reaches zero or one. This model, however, is continuous at
zero, one, and in-between. The second reason is because the model simplifies a larger battery into
a system of smaller battery cells. This enables the user to change out the battery specifications
inside the MPC application.

At this point, the MPC application has a model of the house as well as a battery model.
Before any optimization happens, these models need to be correlated. This is done through a
system of energy balances.

The first of these equations is a calculation of the total power demand as seen in Equation
2.40. Demand is a positive or negative quantity depending on how the quantity solar production

compares to the house energy loads.

Demand = Pyisc + Pavac — Psotar (2.40)

If the demand is negative, then the power is either sold back to the grid (if allowed) or put in
the battery to charge it. Conversely, if the demand is positive, then the house needs to be supplied
with power purchased from the grid or discharge the battery. The cost of buying electricity and
the amount gained from selling electricity to the grid is often different. Consequently, the energy
balance treats the energy sold and the energy purchased as two different variables instead of just
one that is positive or negative. This adds a slight complication because power is only bought or
sold but both should not happen at the same time. This requires model constraints. Slack variables
are added to handle these complementarity constraints. The switching conditions are displayed

below in Equations 2.41 - 2.45.

Gridpyy + Poattery — Gridge > Demand (2.41)
Gridp,y = Demand — Pyystery +SVi (2.42)
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Gridye;; = Pyastery — Demand + SV, (2.43)
Pyattery — Demand = SV — SV, (2.44)
SV SV, <0 (2.45)

Although, the equations look simple, they accomplish a complex goal. Equation 2.41 en-
sures that the power difference between what is purchased or sold from the grid and charged or
discharged from the battery is always greater than the demand requirement. Equations 2.42 -
2.45 constrain the model to only buy or sell electricity. The first equation to consider is Equation
2.45 which forces the product of the two-state variable to be less than or equal to zero. This is
important for Equation 2.44 because it forces one to be zero if the other is non-zero. For ex-
ample, if Pyyrery — Demand is positive, then SVi = Pyyrery — Demand and SV, has to equal 0
to obey the constraint in Equation 2.45. This observation is critical when looking at Equations
2.42 and 2.43. To continue with the example, if SV| = Pyyery — Demand, then Equation 2.42
reduces down to Gridp,, = 0. Alternatively, if §V, = 0, then Equation 2.43 reduces down to
Gridye;; = Pparrery — Demand. Therefore, the model is successfully constrained to only buy or
sell electricity. As a last check of consistency, Pyysrery — Demand is set to be positive, indicating
that the power in the system is greater than what is required by the home. As a result, this extra
power is sold back to the grid which is explained by Equation 2.43 because it reduces down to
Gridye;; = Pyastery — Demand.

Lastly, the end goal of the MPC application in the HEMS is to reduce costs and increase
revenue if possible. To do this, the model needs to relate energy to a dollar amount as seen in

Equations 2.46 - 2.48.

Revenue = Gridye; Pricene: —metering (2.46)
Cost = Gridy,y Pricecjectricity (2.47)
Profit = Revenue — Cost (2.48)
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Equation 2.48 brings all of the MPC models together. The final addition in the MPC is
to maximize Profit (e.g. minimize cost). As stated above, the priority of the objective function
components are adjusted to accomplish different levels of comfort and savings.

All of the discussion to this point is enough for the optimizer to make improvements to
the system. However, one goal of the energy management system is to make proactive changes to
account for weather and market forecasts. This is accomplished by using the forecasting models
discussed in the above sections to inform the MPC about changes to variables in the future. Before
every new MPC solve, the forecasting models calculate new predictions which are then used by
the MPC application to make proactive optimization decisions.

With any optimization, it is important to validate the models. Validation typically is done
by comparing results to experimental data. Experimental data is not readily available, so validation
will be done with the use of first principles knowledge. The above results show a few indications
that the model used is working. First, when the air conditioner is on, the house temperature drops.
Second, the price of electricity increases for a few hours during the MPC horizon and during
this period, the MPC uses the air conditioning as little as possible in an effort to minimize costs.
Lastly, when the amount of solar power production is greater than the demand of the home, the
extra energy from the system is being sent into the battery and the SOC increases.

An example MPC solution is shown in Figure 2.14. The first subplot displays the predicted
temperatures from the house air conditioning model. The second subplot shows when the air
conditioner is on or off, as well as the battery state of charge. In the third subplot, the pricing
schemes for buying and selling electricity are shown. Lastly, the fourth subplot shows the predicted

solar power produced and the predicted house power demand.
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CHAPTER 3. CASE STUDIES

The following case study shows the results of applying the HEMS to manage the energy in
a home with battery storage and a PV system. These results are then compared to identical homes
and climates so that the improvements are quantified.

Sections 3.1 - 3.3 show the results of a one day simulation of a 3350 square foot home
in Phoenix, Arizona. Appendix B contains the simulation and optimization code and Appendix
C contains the EnergyPlus home configuration .idf file. This house is equipped with a 5.0 kW
crystalline silicon rooftop PV system, a 14,000 kWh battery based on commercially available
home batteries, and a 5 ton central air conditioning system. Other home properties are based on a

typical home and are described in greater detail in the configuration file found in Appendix C.

3.1 Base Case

Before the results of the HEMS are discussed, it is important to first look at the case where
no energy management software is present.

The first plot shows the ambient temperature, air temperature inside the home, and the
temperature set points. As expected, the air conditioner goes through repetitive cycles to maintain
the temperature inside the home. During the hottest period of the day, the air conditioner has to
stay on for a long period to maintain a comfortable atmosphere. This behavior is also seen in the
second subplot which shows the status of the HVAC system. The third subplot shows the pricing
structure for purchasing energy and for selling it through net metering. In the last subplot, energy
flows are shown for the home. This includes the production of solar power, the amount of energy
purchased from the grid and the amount of energy sent back to the grid. Energy on the positive
half of the plot help reduce the optimizer objective function whereas the negative half will increase

the objective function.
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The first important trend to notice is that purchasing price is at its highest when the air
conditioner runs the most. This is caused because energy prices are set higher during peak hours
of the day due to the increase in demand. Therefore the energy load is what ultimately drives the
prices. Successful energy management software should shift or lower the load peak so that penalty
for buying energy during high prices is minimized. This is accomplished by pre-cooling the home
or using energy storage to run the air conditioner.

Another important trend to recognize is that the solar power production follows the same
pattern as the changes in ambient temperature. Energy demand is usually at its highest during
the hottest time of the day, however with a solar kit, energy demand can be lowered significantly.
Is is particularly important for a house with no optimization because it helps lower energy costs
without the need of process decisions. An optimizer however, should be able to manage the energy

production more effectively with the use of energy storage.

3.2 Optimized Case

Once the base case is understood, it is easier to realize the improvements achieved due to
the HEMS. Figure 3.2 below shows the plots of the optimized home. The simulation inputs are
identical to those used in the base case. This means the house, weather data, occupancy data, and
appliance schedules are all identical. The main difference is that the optimized case has the option
to use a battery to store and discharge energy. To make sure that the net energy in both cases are
equal, the battery is constrained to start and end with the simulation day with the same SOC.

The first subplot in Figure 3.2 shows the actual ambient temperature and temperature inside
the home. It shows that the temperature in the home stays near the comfort range chosen by the
user which is critical to the overall success of the HEMS. It is important to notice that around
6 pm, the house temperature actually goes beyond the high comfort set point. This results from
balancing the multi-objective optimization problem. In this situation there is heavy weighting on
the economic objective which allows the house temperature to rise above the set point. The weight

is adjusted to keep the temperature below this limit if that is the desired result.
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The second subplot of 3.2, shows the status of the air conditioner and the battery. This sub-
plot is significantly different compared to Figure 3.1. In the base case, the air conditioner cycles
on and off regularly. The optimized case has a more methodical approach to turning the air con-
ditioner on and off. The main reason for this change is that a typical thermostat operates between
a cooling temperature and a shutoff temperature whereas the optimized case has the freedom to
move freely as long as it is within the comfort range set by the user. As a result the air conditioner
can turn on for longer periods of time and eliminate unnecessary cycling. Another difference is
that in the optimized case, the air conditioner is scheduled to come on at better times. The price
of electricity increases at 2 pm and as a result the optimizer starts to proactively cool the home to
avoid the additional costs.

SOC of the home battery system is also displayed on the second subplot of 3.2. The battery
remains relatively inactive until the solar panels begin to produce power. At that point the battery
builds up its charge until the increase in price for electricity. If the air conditioner needs to be run
during this high price period, then the battery discharges to lower the demand require by the grid.
This allows the system to stay in the comfort limits at all times of the day while also reducing the
cost of electricity.

Lastly, there are important improvements seen in the fourth subplot in Figure 3.2. This plot
shows the evidence that system changes make a difference. The power needed from the grid is not
completely mitigated but it is reduced compared to the base case. The amount of energy sold back
to the grid in both cases differs by only 1.21% different.

These results indicate that the savings come from scheduling appliances and reducing con-
sumption rather than selling energy back to the grid for profit. This result may differ if the pricing

structures changes, allowing the net metering to be more profitable.

3.2.1 Comparison to Base Case

As with any optimization problem, it is important to be able to quantify the improvements.
The two competing objectives in the HEMS presented in this work are comfort and the cost of
electricity. The previous sections show that the comfort constraints are maintained but give little
information about the actual economic improvements. The cost of electricity for the base case

simulation.day.is.$5:12..On.the other hand the cost of electricity for the optimized energy system
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is $3.05. That equates to a savings of $2.07 or a 40% decrease in energy cost. The optimizer also
reduces the number of times the air conditioner unit cycles on/off which decreases the amount of
damage to the system. Decreasing damage will lower long-term maintenance costs, however this is
not explored in detail in this work. This is a significant improvement and shows that there is value
in using a proactive energy management system to handle residential energy usage in Phoenix,
Arizona.

These results are from a simulation run on one of the hottest days of the year in Phoenix.
The results during other times of the year will vary. Phoenix, Arizona is warm year round which

suggests that these improvements could be beneficial year round.

3.3 MPC only HEMS Case study

To show the benefits of combining MHE and MPC, a simulation is run with the MHE
model updates turned off. The MHE application is on for one hour before the MPC application
turns on so that model parameter estimations are stable enough to be used in the MPC application.
After the one hour, the MHE parameter estimates are held constant and remain static within the
MPC application. The MPC uses those estimates for the remainder of the day to optimize the home
energy system. The results of this simulation are shown in Figure 3.3.

The temperature subplot shows that the house temperature fluctuates often. This is due
to the optimizer turning the air conditioner on and off repeatedly, and consequently, increases
the amount of power consumption. The last subplot of Figure 3.3 has a significant amount of
red compared to the green which indicates that there is more power being consumed than is being
generated or saved. The optimizer is converging to a solution but it is worse than if no optimization
occurred at all due to model mismatch. Using a dynamic model that adjusts through MHE allows
the model mismatch to be minimized and consequently allows the optimizer to reach an improved

optimal solution as discussed in the following section.
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Figure 3.3: Optimized House in Phoenix, AZ
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3.3.1 Comparison to full HEMS application

To put the effects of removing the MHE application from the HEMS, it is helpful to com-
pare the costs in the optimized and base cases. The HEMS without MHE increased the cost by
155% when compared to the HEMS with both MHE and MPC. Additionally, removing the MHE
has an adverse effect on the cost savings that it increases costs by 41% when comparing it to the
base case.

These results are convincing that aligning the model parameters to the simulated home
model is critical to the HEMS developed in this work. As discussed in the Introduction, there are
HEMS applications that rely solely on MPC to optimize a home. This is done by developing a
robust and comprehensive model. However, these models are more computationally expensive to
optimize. This work uses a model that uses the benefits of MHE and MPC which allows the model
to remain simple. This is accomplished as the MHE application dynamically changes the model
parameters as the system changes. There are many thermodynamic properties that are temperature
dependent such as density, heat capacity, etc. As the temperature in the home and the air outside
the home change, these parameters also change. By using MHE, these changes are handled appro-
priately by making new parameter estimations. For the MPC only HEMS, equations would need to
be included in the model to help account for these dynamics which explains the additional model
complexity.

Another reason MHE is critical to the HEMS in this work is that it estimates parameters
based on the system changes made by the MPC. When the MPC optimizes the system, changes to
the system may be made. These changes cannot always be predicted and vary from time to time.
The MHE application is running in synchronization with the MPC, so it adjusts to the model to

match in real-time to what the changes made by the MPC.
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CHAPTER 4. CONCLUSIONS AND FUTURE WORK

This work demonstrates the ability to use MPC and MHE as a home energy management
system in residential homes. The home energy management approach combines weather forecasts,
energy consumption forecasts, solar production forecasts, a battery, an air conditioner, and house
thermodynamics. All of these models are combined to be used in closed loop optimization. MHE
estimates uncertain house thermodynamic and air conditioner model parameters. The MHE appli-
cation is developed to be able to solve for a variety of different homes and air conditioner units
allowing for a broad range of applications. This minimizes the time needed to fit the models to
every individual house. This work reaches optimal operation by considering all major elements of
a home energy system simultaneously. Lower energy costs and improved grid energy utilization
are achieved by automatically controlling air conditioner and battery usage.

Another innovation of this work is the use of MPCCs to model the on/off behavior of
an air conditioning unit, allowing the system to be solved with gradient-based solvers. In most
cases, gradient-based solvers are faster and more reliable than genetic solving algorithms or mixed-
integer methods. Genetic solving algorithms are commonly used when solving a model with one or
more discrete variables. This work shows that by using the MPCCs to change the on/off behavior
from discrete to continuous, dynamic optimization is used to control a home energy system in close
to real-time speeds.

EnergyPlus is used to simulate a 3350 square foot home in Phoenix, Arizona. The initial
test uses a typical temperature control scheme with no energy management. Another test is run
which implements the HEMS developed in this work. Results of the comparison between these
two tests show a cost and energy reduction of 40% and 21% respectively. These improvements
have a positive impact on grid stability and peak load because the energy consumption is spread

out more evenly throughout the day.
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Computational speed and model accuracy is also considered in this work. For the above
case study, there are 23,749 equations and 4 degrees of freedom for every MHE solution. The
problem is large due to the 36 hour time horizon. The average solution takes 2.755 clock seconds
and around 5 iterations to solve. These results are a direct impact of a simple model. The MPC
application is much more complex due to the additional models and model interactions. The MPC
has 10,656 equations and 11,231 variables to optimize over the 24 hour horizon. The initial MPC
solution time is 776 clock seconds and 3954 iterations. Subsequent MPC solutions average 318
seconds and 1735 iterations. There is a major difference because the first solution has to completely
initialize and subsequent solutions use the previous solution to initialize the optimizer and converge
to the new solution about 59% faster.

Lastly, the benefits of including both MHE and MPC in the HEMS are analyzed. For
each MHE plus MPC solution it takes roughly 5.3 clock minutes. Each solution time step is 10
minutes apart so there is sufficient amount of time for HEMS application to run before the next
system change. Using only MPC in the HEMS with the models developed in this work increase
the costs of electricity by 41% compared to the base case or 155% when compared to the HEMS
that includes both MHE and MPC. Using both MHE and MPC allows models to be simple while
also flexible to adjust to changes to the system. Using this approach allows HEMS applications to

solve quickly and retain enough accuracy to decrease electricity costs.

4.1 Future work

Future work should expand these methods to include the following: 1) additional testing in
different climates and seasons, 2) additional testing on various pricing schemes, 3) more elaborate
forecasting models by including additional parameters and non-linear terms, and 4) ways to inves-
tigate and improve solve time and solver reliability to access the viability of using on an actual
home energy system.

This work tests the optimization software on a residential home in Phoenix, Arizona. Future
work should explore the benefits of applying the home energy management software developed in
this work to different climates. Phoenix, Arizona is warm year-round and requires significant use
of an air conditioner. Other climates have a smaller dependency on air conditioners which affects

the total effectively.of.the.software. This testing should also expand to testing during different
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seasons throughout the year for similar reasons. Future work can also benefit from incorporating
a furnace model for colder climates so the energy consumption can be optimized for all weather
conditions.

Pricing schemes vary based on location and utility. This work focuses on a basic on-peak,
off-peak pricing structure. Future work should explore real-time pricing (RTP) schemes, more
complex (TOU) schemes, and other pricing schemes to see which schemes are more conducive for
the home energy management system efficiency. The research can be expanded to develop a more
optimal pricing scheme that could be presented to utility companies.

The forecasting models in this work are accurate, but basic and location-specific. For
example, this work trains the forecasting models to data specific to Phoenix, Arizona. Although
these models can be re-trained for new locations, it is a tedious and time-consuming task. Future
work can develop these forecasts to be more robust and flexible which would allow this software
to be easily implemented into wider range of homes and locations.

Finally, these results need to be implemented and tested on a real home in real-time. Cur-
rently, these optimization algorithms have only been tested on a simulated house with a simulated
time frame. Future work should expand the study to test the energy management system in an ac-
tual home to see if the results can produce similar findings to those found during simulation. Field
testing would help determine if the energy management system developed in this work is accurate

and flexible enough to be implemented into real residential energy systems.
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APPENDIX A. SOFTWARE INTERFACING FOR ADVANCED CONTROL

A.1 Software Interfacing for Advanced Control

One practical hurdle for building energy optimization is software interfacing with building
energy simulators for testing. A Python script was developed for this work. The first step of the
process produces an XML file that contains the building information. BEopt has a graphical user
interface (GUI) for creating residential building models. However, it is beneficial to be able to
modify the XML files programmatically. In the BEopt installation file, a Python program called
create_xml_file.py is included which accepts arguments that will allow the user to modify an XML
file with new building parameters. The next step in the process is to produce an IDF file which
is the file that EnergyPlus uses to run the simulation. The BEopt installation also comes with a
program that assists in this process. The XML file is the input and the user specifies the output
location of the newly created IDF file.

At this point EnergyPlus has the appropriate file to run. However, there are additional
ways to improve the interaction with the simulator. The IDF file contains schedules of when the
appliances in the home are used, temperature set-points, and many more parameters to inform
the simulator of what to do. Therefore, it is crucial that an optimizer can manipulate these. This
can be done by setting up the IDF file to receive external changes. There are two major steps to
accomplish this. The first is to modify and map the IDF file to understand external commands.
EPPY is a python package developed just for this task. With this package, the user can set up
the variables for the simulator to output to the optimizer, as well as set up the variables that the
optimizer will input back into EnergyPlus. The exact details of this procedure can be found in the
source code, as well as BEopt documentation.

The last step of the process is to interact with the simulation program. Fortunately, there is
another Python package developed for this task called pyEp. This package was developed to allow

Python programs to access the simulation outputs setup in the last step. It also allows users to
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send back inputs to the simulator, allowing the user or optimizer to make changes to temperature
set-points or appliance schedules.

With the combination of all of these tools, a program can be created to fully interact with the
EnergyPlus simulator. These developments are crucial to allow an energy management software
to interface with the simulations. It also gives large amount of cases and data to run and test the

software to ensure proper behavior.
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APPENDIX B. SOURCE CODE

B.1 Source Code

2 0-215 Initialization

3 216-446 Real time plotting

4 447-1161 Optimization Simulation
5 #512—-640 MHE

6 #641—724 Forecasting Models
7 #*725—1058 MPC

8 1162—1241 Base Case Simulation
9 1242—-1453 Post Simulation Plots
10 =

12 import pyEp

13 import os

14 import matplotlib.pyplot as plt

15 from matplotlib import dates

16 import time

17 import numpy as np

18 import pandas as pd

19 import datetime

20 from gekko import GEKKO

21 import initialize_-sim_files

22 import APS_data as APS

23 import simulation_functions as simf
24 import pickle

25 from variable_forecasting_with_datagen import pred.X_min_ahead_point
26 import shutil

27 from matplotlib import animation

28 from powerwall_Battery_-Model import Battery

31 Start.date = *7/1/2013° #must be 2013
32 End.date = *7/3/2013° #must be 2013

33 Summer = True

34

35 Timestep_size = 1 #interval (min apart) must go into 60 evenly (60,30,20,15,12,10,6,5,4,3.,2.1)
36

37 Cooling_.SP_.T = simf.f_to_c(80) #69-80 F

38 Heating_SP_.T = simf.f_to_c (60) #6375 F

39

40 T-Max.movement = 3 #max number of degrees(F) the temperature can change in 1 hour

41

42 Include_solar = True
43 Include-battery = True

44 Net_metering = True

46 MHE_estimation = True
47 mhe_start_time = 1440 + 1440 #start after 1 day(1440 min)
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48 MPC_control = True

49 mpc_start_time = 1500 + 1440 #start after 1 day 60 min(1500 min)
50

51 Forecasting = True

52 Real_time_Plotting = False

53

54 remote_solve = True

55 remote_server = "http :// machinelearning.byu.edu’
56

57 AC_force_off = False
58 #%%file locations

59

60 #’phoenix’ , ’atlanta’

61 location_name = ’phoenix’

62

63 if location-name == ’“phoenix :

64 weather_.name = *USA_AZ_Phoenix—Sky.Harbor.Intl .AP.722780_TMY3’ # must be in your Eplus weather folder #change xml

65 if location.name == atlanta’:

66 weather.-name = 'USA_GA_Atlanta—Hartsfield —Jackson.Intl .AP.722190.TMY3’ # must be in your Eplus weather folder #change xml
67

68 house_-label = “cody_house’

69 house_hvac_load = 5590

70

71

72 Eplus_file_location = "C:\\ EnergyPlusV8—8-0"

73 BEopt.installation_path = r”C:\ Program Files (x86)\NREL\BEopt-2.8.0"

74 current_dir = os.getcwd ()

75 path_to_buildings = current_dir + 7\\Buildings” #must be full path to work with ep input
76

77 pyEp.set_eplus._dir(Eplus_file_-location) #sets energyplus path

78 builder = pyEp.socket_builder(path_to_buildings) #creates exe path

79 configs = builder.build () # Configs is [port, building_folder_path , idf]
80

81 for file in os.listdir("%s\\raw_files’ %current_dir):

82 os.remove ("%s\\raw_files\\%s’ %(current_-dir, file))

83

84

85 shutil.copy2( '%s\\houses\\%s\\default.xml’ %(current_dir ,house_label ), "%s\\raw_files’ %current_dir)
86

87

88 if not os.path.isdir( plots\\%s\\%s  %(location_name , house_label)):

89 # os.mkdir (" plots\\%s’ %(location_name))

90 os.mkdir (*plots\\%s\\%s  %(location_name , house_label))

91 os.mkdir (" plots\\%s\\%s\\mhe_plots” %(location_.name , house_label))
92 os.mkdir (* plots\\%s\\%s\\mpc_plots’ %(location_.name , house_label))
93

94 #%% Misc Parameters

95 MHE_Debug = False

96 MPC_Debug = True

97 MPC.Debug._break = False

98 HVACSTATUS = 0 #initialize varible

99 #%% setup time

100 Start_date = datetime.datetime.strptime (Start_date , "%aw/%d/%Y")

101 End_date = datetime.datetime.strptime (End_date , '%an/%d/%Y")

102 End.date = End_date + datetime.timedelta(days = 1)

103 #time simulation

104 start_-time = time.time() #record start time of simulation for simulation time calculation
105

106 #setup time

107 Timesteps = int(60/Timestep-size) # do a multiple of 5 to work with RTP pricing (timesteps in an hour so 4 = 15 min)

108 sim_timestep_tot = int ((((End.date — Start_date).days) = 24)/(Timestep.size/60)) #calculate total timesteps of simulation
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109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

165
166
167

sim_timestep_-per-day = int(sim-timestep-tot/((End_-date — Start_date).days)) #calculate total timesteps

time_df = pd.DataFrame (

{ Time (Minutes)’ : np.arange(0,sim_timestep-tot, 1),
"Time (Days)’: np.arange(0,(End.date — Start_date).days,1/1440),
"Time (hours)’: np.arange (0, 24 % (End.date — Start_-date).days, 1/60)

bH

#%% Setup Pricing (pulls RTO pricing from api)

Capacity_Charge

net.meter-price

= 7 #cents/kWh #this is the same over all time so it is not included in calc for cost

= 0.1196%100

input_array = APS.saver_plan.prices

Total_price_per-

hourly ™)

timestep-df = pd.DataFrame (

in 1 day of simulation

{ time (sec)’: np.arange(0,((End.date — Start_date).days + 1)=86400,60),

"price’: simf.build_price_array (Start.date , End.date, Timestep-size, input.array ,

b

#%%load forecasting formula parameters

with open(current_dir + “\\obj\\Drybulb_Temp_(C) -parameters_sol.pkl’, ’rb’) as f:

Drybulb_Temp.C_forecasting_param_dict = pickle.load(f)

with open(current_dir + ’\\obj\\Misc_building_-Power. (W) _parameters_sol_improved.pkl’, ’rb’) as f:

Misc_building_Power_forecasting_param_dict = pickle.load(f)

with open(current_dir + “\\obj\\Total_Power_Generated_- (W) _parameters_sol_hour_only.pkl’,

Total_Power_-Generated-W _forecasting_param.dict = pickle.load(f)

#%% Initialize plot and storage variables

results_.df = pd.

DataFrame (
{ actual profit with solar’: np.zeros(sim_timestep_tot),

optimized profit’: np.zeros(sim_-timestep_tot),

‘rb’) as f:

Tactual profit with solar normal temp control’: np.zeros(sim_timestep_-tot),

“actual profit no batt or solar’: np.zeros(sim_timestep-tot)})

#combine this with output_df?

plotting_df = pd.DataFrame (

{ Cooling SP’: np.ones(sim_timestep_tot)=Cooling_SP_T ,
"Heating SP’: np.ones(sim_timestep_tot)sHeating_.SP_T ,

"Capacity Charge’: np.ones(sim-timestep-tot)=Capacity_Charge ,

'TOD Pricing’: np.ones(sim_timestep_tot)*Total_price_per_timestep_df[ price’][0:sim_timestep_tot],

TH MHE (K)’ : np.zeros(sim-timestep-tot),

"Time (Days)’: time.df[ Time (Days)’].iloc[0:len(time_df[ Time (Days)’])—1]

b

HVAC.O = np.ones(sim_timestep_tot)x1

T_.SP_df = pd.DataFrame (

#testing better

{ Cooling SP’: np.ones(sim-timestep-tot)*Cooling_-SP_T ,
"Heating SP’: np.ones(sim_timestep_tot)+Heating_.SP_T,

b

training day

T-SP_df[ Cooling SP’] = np.ones(sim_timestep-tot)*(Heating-SP_T — 2) #change the array to constant

with mpc changes, add 2 to increase driving force for thermostat

T_SP_df[ Heating SP’] = np.ones(sim_timestep_tot)x*(Heating_SP_.T — 10)

#9% MPC

forecasting_index_array_mpc = np.array ([
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168 [0,1,2,3.4,5,6,7.8.,9,10,20,30],

169 [0,1,2,3,4,5,6,7,8,9,10,20,30],

170 [0,1,2,3,4,5,6,7,8,9,10,20,30,40],

171 [0,1,2,3,4,5,6,7,8,9,10,20,30,40,50],

172 [0,10,20,30,40,50,60],

173 [0,10,20,30,40,50,60,120],

174 [0,10,20,30,40,50,60,120],

175 [0,10,20,30,40,50,60,120],

176 [0,10,20,30,40,50,60,120],

177 [0,10,20,30,40,50,60,120],

178 [0,10,20,30,40,50,60,120],

179 [0,10,20,30,40,50,60,120,180], #120 ahecad

180 [0,30,60,120,180,240,300,360],

181 [0,30,60,120,180,240,300,360],

182 [0,30,60,120,180,240,300,360],

183 [0,60,120,180,240,300,360,420],

184 [0,60,120,180,240,300,360,420,480,540], #480

185 [0,120,180,240,300,360,420,480,540,600,720],

186 [0,120,180,240,300,360,420,480,540,600,720,780],

187 [0,180,300,420,540,720,840,960,1080,1200,1320,1440],#840
188 [0,180,300,420,540,720,840,960,1080,1200,1320,1440],
189 [0,180,300,420,540,720,840,960,1080,1200,1320,1440],
190 [0,180,300,420,540,720,840,960,1080,1200,1320,1440]
191 1)

192

193 different-times = []

194 for i in range(len(forecasting_index_array_mpc)):

195 different_-times = np.append(different_-times , forecasting-index-array_-mpc[i])
196 different_-times = set(different_times)

197 different-times = [int(i) for i in different-times]

198

199 mpc_time = np.append(np.arange(0, 120,10), np.arange(120,1460,20))

200 mpc-time = np.arange (0, 1450,10)

201

202 mpc-time = mpc-time/60

203 #%% set up simulator

204 #intialize sim files (in seperate .py file)

205 print(’initializing files’)

206 initialize_sim_files.initialize (BEopt.installation_path , Eplus_file_location , path_to_buildings , Start_date.month, End.date.month,
Start_date .day, End.date.day, Timesteps, location.name, Cooling-SP.T, 0)

207

208 #%% initialize real time plot

209 plt.close(’all’)

210

211 #9%%mhe plot

212 if Real_time_Plotting == True:

213 fig, (axl, ax2) = plt.subplots(2,1)

214 #setup figure

215 fig.tight_layout ()

216 fig.set_figheight (8)

217 fig.set_figwidth (15)

218 ax2.2 = ax2.twinx ()

219

220 hour_locator = dates.HourLocator ()

221 hour_formatter = dates.DateFormatter (%I %p’)
222 min_locator = dates.MinuteLocator(interval = 5)
223

224 mhe_input_array = args_input = np.ones([10,3])
225 mhe_input_df = pd.DataFrame(mhe_input_array)
226

227 #global mhe_input_df
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228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259

260
261
262
263
264
265
266

268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286

# ax2.2 =

def frames():
while True:

yield mhe_input_df

subplot_1(args):
#clear plot
axl.cla()

#set data
t = mhe_input_df.iloc [0].values
Tha = mhe_input_df.iloc[1].values
Ta = mhe_input_df.iloc[2]. values
SP_hi =
SP_low =

mhe_input_df.iloc [5].values
mhe_input_df.iloc [6]. values

Tha-mhe = mhe_input_-df.iloc[7].values

#setup subplots
axl.set_title (" Temperatures’)
axl.set_ylabel ("Temp (F)")
for tick in axl.get_xticklabels ():
tick.set_rotation (45)
.xaxis.set-major-locator (hour_-locator)
.xaxis.set-major_formatter (hour_formatter)

.xaxis.set_minor_locator (min_locator)

#plotdata

Tha ,
.plot(t,Ta , color="xkcd:red’, label =
axl.plot(t,SP_hi,
.plot(t,SP_low ,

axl.plot(t, color="xkcd:black’, label =

color="b", linestyle = '—7,

linestyle = "—7,
axl.plot(t,Tha_mhe, Marker =

1)#Thapred-line-mhe . set_data (t,Tha_mhe)

color="r",
color="xkcd: fuchsia’,
markersize =

#post legend

return axl.legend ()

de

-

subplot.2 (args):
#clear plot
ax2.cla()

ax2.2.cla()

#set_data
t =
PHVAC = mhe_input.df.iloc[8].values

IO_HVAC = mhe_input_df.iloc [9]. values

mhe_input_df.iloc [0]. values

#setup subplots
ax2.set_title ('AC Energy and Status’)
ax2.set_ylabel ("Energy Usage (W)’)
set_ylim ([0,10000])

tick

ax2.
for in ax2.get_xticklabels ():
tick.set_rotation (45)
.xaxis.set_.major_locator (hour_locator)
.xaxis.set-major_formatter (hour_formatter)

.xaxis.set_minor_locator(min_locator)

ax2.twinx ()

rotation =

ax2_.2.set_ylabel ("AC On/OFF",
ax2.2.set_ylim ([ -5,1.5])

x’
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r’$T_{air ,inside}$ )#Tha_line_mhe.set_data(t, Tha)
r’$T_{air ,ambient}$’)#Ta_line_mhe.set_data (t,Ta)

label
label

r’$SP_{HI}$ )#SPHI_line_mhe.set_data (t,SP_hi)
= r’$SP_{LO}$ )#SPLO_line_mhe . set_data (t,SP_low)

, linestyle = "~ label = r’$Predicted$ $T_{air ., inside}$’,

270, labelpad=20)
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288
289
290
291

292
293
294
295

296
297
298
299
300
301

302
303
304
305
306
307
308
309
310
311

312
313
314
315
316
317
318
319
320
321

322
323
324
325
326
327
328
329
330
331

332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348

#plot data
ax2.plot(t,P.-HVAC,

ax2.2.plot(t,IO.HVAC ,

color="g’, label = r’$Q_{HVAC}$ )#P

color="r",

#post legend
return ax2.legend(loc="lower left’), ax2.2.legend(loc
def animate (args):

return subplot_1(args), subplot_-2(args),

anim = animation.FuncAnimation(fig, animate, frames=frames
#%%mpe plot

fig2, (ax21, ax22, ax23, ax24) = plt.subplots(4,1)

#setup figure

fig2.tight_layout ()

fig2.set_figheight(8)

fig2.set_figwidth (15)

ax22.2 = ax22.twinx ()

mpc_hour_locator = dates.HourLocator(interval = 2)
mpc_hour_formatter = dates.DateFormatter (%I %p’)

mpc-min_locator = dates.MinuteLocator(interval = 30)

mpc.-input.array = args-input = np.ones([15,3])

mpc_input_.df = pd.DataFrame(mpc_input_array)

def mpc_frames () :
while True:

yield mpc_input.df

[N
)
-

" subplot.-21(args):
#clear plot
ax2l.cla()
#set data

t = mpc.input_df.iloc[0].values
Tha_pred = mpc_input_df.iloc[1].values

Ta-pred = mpc-input-df.iloc[2].values

SP_HI = mpc_input_df.iloc [7].values
SP_.LO = mpc-input_df.iloc [8].values

#setup subplots

ax21.set_title (" Temperatures’)

ax21.set_ylabel ("Temp (F)")

for tick in ax21.get_xticklabels ():
tick.set_rotation (45)

ax21.xaxis.set-major_locator(mpc_-hour_locator)

ax21.xaxis.set_major_formatter (mpc_hour_formatter)

ax21.xaxis.set_minor_-locator (mpc.min_locator)

#plot data

ax21.plot(t, Tha.pred , color="xkcd:black’, Marker =

ax21.plot(t, Ta_pred , color="xkcd:red’, Marker = ’0o’,
ax21.plot(t,SP.HI, color="b", linestyle = '—, label
ax21.plot(t,SP.LO , color="r", linestyle = —, label

#post legend

return ax21.legend ()

64

label = r’$HVAC$ $1/0$°,

= ’upper

o', markersize = 2.5,

HVAC_line.mhe . set_data (t ,P.-HVAC) ,
Is="steps ’)#HVACIO_line_mhe . set_data (t ,JO.HVAC)

left’)

fig.tight_layout ()

, interval=1000, repeat = False, blit=False)

label = r’$Predicted$ $T-{air,inside}$’),
markersize = 2.5, label = r’$Predicted$ $T_{air ,ambient}$")

= r’$SP_{HI}$ )#SPHI_line_mhe . set_data (t,SP_hi)

= r’$SP_{LO}$ )#SPLO_line_mhe . set_data (t,SP_low)
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349

350 def subplot.22(args):

351 #clear plot

352 ax22.cla()

353 ax22.2.cla()

354

355 #set data

356 t = mpc_input_df.iloc [0]. values

357 Batt_.SOC = mpc-input_df.iloc [3].values

358 IO_HVAC = mpc_input_df.iloc [4]. values

359

360 #setup subplots

361 ax22.set_title ('AC Status and Battery SOC”)

362 ax22.set_ylabel ("AC STATUS )

363 ax22.set_ylim ([0,1.1])

364 for tick in ax22.get_xticklabels ():

365 tick.set_rotation (45)

366 ax22.xaxis.set-major_locator (mpc-hour_locator)

367 ax22.xaxis.set-major_formatter (mpc_hour_formatter)

368 ax22.xaxis.set_minor_locator (mpc_min_locator)

369

370 # ax22.2 = ax22.twinx ()

371 ax22.2.set.ylabel ('BATT SOC’, rotation = 270, labelpad=20)
372 ax22.2 .set_ylim ([0,1.1])

373

374 for tick in ax22.2.get_xticklabels():

375 tick.set_rotation (45)

376 ax22.2.xaxis.set-major-locator (mpc-hour_locator)

377 ax22_2 . xaxis.set-major_formatter (mpc_hour_formatter)

378 ax22.2.xaxis.set-minor_locator (mpc.min_locator)

379

380 #plot data

381 ax22.plot(t, Batt-SOC, color="g’, label = r’$SOC$’, Is=’steps’),
382 ax22_2.plot(t, IOHVAC , color="r’, label = r’$HVACS $1/0$", ls="steps’)
383

384 #post legend

385 return ax22.legend (loc="upper left’), ax22_.2.legend(loc="upper right”)
386

387 def subplot_23 (args):

388 #clear plot

389 ax23.cla()

390

391 #set data

392 t = mpc_input_df.iloc [0]. values

393 TOD.price = mpc-input_df.iloc[5].values

394 Netmetering_price = mpc_input_df.iloc[6].values

395

396 #setup subplots

397 ax23.set_title (' Pricing’)

398 ax23.set_ylabel (" Cents/kWh’)

399 for tick in ax23.get_xticklabels ():

400 tick.set_rotation (45)

401 ax23.xaxis.set-major_locator (mpc_hour_locator)

402 ax23.xaxis.set_major_formatter (mpc_hour_formatter)

403 ax23.xaxis.set-minor_-locator (mpc._min_locator)

404

405 #plot data

406 ax23.plot(t, TOD_price , color="r’, label = r’$TOD$ $\$$ ', ls="steps’)
407 ax23.plot(t, Netmetering_price, color="g’, label = r’SNetmetering$ $\$$°, ls=’steps’)
408 return ax23.legend ()
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410 def subplot.24 (args):

411 #clear plot

412 ax24.cla()

413

414 #set data

415 t = mpc-input_df.iloc[0].values

416 PV_prod = mpc_input_df.iloc[11].values

417 PHVAC = mpc_input_df.iloc[13].values

418

419 #setup subplots

420 ax24.set_title (" Energy Predictions’)

421 ax24.set_ylabel (’Usage/Production (W)")

422 ax24.set_ylim ([0,8000])

423 for tick in ax24.get_xticklabels ():

424 tick.set_rotation (45)

425 ax24 . xaxis.set-major-locator (mpc-hour_locator)

426 ax24 . xaxis.set_.major_formatter (mpc_hour_formatter)

427 ax24 . xaxis.set-minor_locator (mpc-min_locator)

428

429 #plot data

430 ax24.plot(t, PV_prod , color="xkcd:orange’, label = r’S$Solar$ $Power$ S$Produced$’, ls=steps’)
431 ax24.plot(t, PHVAC, color="xkcd:cyan’, label = r’$Total$ $Power$ SRequired$ ', ls=’steps’)

432 return ax24.legend ()

433

434

435 def animate2(args):

436 return subplot_21(args), subplot_22(args), subplot_23(args), subplot_24(args), fig2.tight_layout()
437

438 anim2 = animation.FuncAnimation(fig2, animate2, frames=mpc_frames, save_count = 0, interval=1000, repeat = False, blit=False)
439

440 plt.pause(4)

441 #9%run simulator
442 while True:

443 try:

444 ep = pyEp.ep-process(’localhost’, configs[0][0], configs[0][1], weather_name) #runs exe
445 break

446 except IndexError:

447 builder = pyEp.socket_builder(path_to_buildings) #creates exe path

448 configs = builder.build () # Configs is [port, building_folder_path , idf]

449

450 # Cosimulation

451 outputs = [] #initialize array

452

453 EPTimeStep = Timesteps

454 SimDays = ((End_-date — Start_date).days)

455 kStep =1

456 MAXSTEPS = int(SimDays#24+«EPTimeStep) #

457 deltaT = (60/EPTimeStep)«60; #seconds per timestep

458

459 try:

460 print ("Running Cosimulation with Total Steps ” + str (MAXSTEPS))
461 while (kStep — 1 < MAXSTEPS) :

462 i_array = kStep — 1

463

464 print(’ )

465 print(str(kStep) + /' + str (MAXSTEPS))
466

467 sim_time = (kStep—1) = deltaT

468

469 dayTime = sim_-time % 86400
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471 #parse output array

472 output = ep.decode_packet_simple(ep.read())

473 outputs.append(output)

474

475 output.df = pd.DataFrame.from_records (outputs , columns =

476 [*Drybulb Temp (C)’,’Zone Air Temp (C)’,

477 *Cooling Temp SP (C)’, ’Heating Temp SP (C)’,

478 *Air System Total Cooling Energy (J)’, "Total Facility Power Demand (W),

479 "HVAC Power (W)’, "Total Power Generated (W)’ ,

480 site diffuse solar radiation’ , ’site direct solar radiation’,

481 *site ground relected solar radiation’, ’pv array eff’,

482 ‘pv cell temp’, ’pv short circuit current’, “open circuit voltage’,

483 *Relative Humidity’, *Wind Speed’, ’Site Ground Temp (C)’, ’Precip Depth’,

484 "Rain Status’, ’Sky Clearness’])

485

486 output_df [ Misc building Power (W)’] = output.df[ Total Facility Power Demand (W)’] — output_-df[ HVAC Power (W)’]

487 output_df [ Water VP (hPa)’] = (output_df[’Relative Humidity " ]/100)%6.105%np.exp((17.27+ output_df[ Drybulb Temp (C)’])
/(237.7 + output_df [ Drybulb Temp (C)’]))

488 output_df [ Apparent Temp (C)’] = output_df[ Drybulb Temp (C)’] + .348 = output_df[ Water VP (hPa)’ ]# — .7 = output_.df[’
Wind Speed ]

489 # + .7 x ((output_df[’site diffuse solar radiation’] + output.df[’site direct solar radiation’] +
output_df[’site ground relected solar radiation ’])

490 # /(output_df[’Wind Speed’] + 10)) — 4.25 #TODO check the radiation terms

491

492 output_df [ 'HVAC 1/0’] = output_df[ 'HVAC Power (W)'] != 0

493 output_df [ 'HVAC 1/0’] = output.df[ 'HVAC 1/0’].astype(bool).astype(int)

494 output_df[ Timestep’] = range (kStep)

495 output-df[ Date and Time’] = Start_-date + datetime.timedelta(seconds = 60)xoutput.df[ Timestep ]

496

497 output-df [ Act Demand’] = output_-df[ Misc building Power (W)'] + output_df[ HVAC Power (W)’]

498 AC_DC.invert_eff = np.sqrt(.9) #this is to account for energy in and energy out losses

499 output_df [ Grid_Requirement (no battery)’] = output_df[’Act Demand’] — output_df[ Total Power Generated (W)’'] =
AC_DC._invert_eff

500 output_df [ "TOD PRICING'] = Total_price_per_timestep_-df[ price ]J[:len(output_df)]

501 output-df [ 'NETMETERING PRICING'] = np.ones(len(output-df)) % net.meter-price

502

503 #outputs list and order can be found in the variables file inside the building folder

504 #%% MHE during loop

505 if MHE_estimation == True and i_array >= mhe_start_time and i_.array <= mpc._start_time: # skip a day so that weather can be
predicted #TODO check to make sure this isnt breaking things

506 #start values

507 if i_array == mhe_start_time:

508 A_storage ={}

509 B_storage ={}

510 C_storage ={}

511 D_storage ={}

512 solve_time_-mhe = []

513 #79VHE model

514 mhe = GEKKO(name = 'MHE’ ,remote = False)#remote_solve , server = remote_server)

515

516 #in seconds

517 mhe_time = np.arange(0,36%60, 1)/60 #must equal units of mpc time

518

519 mhe.time = mhe_time

520 #parameters to estimate

521 A_mhe = mhe.FV(value = 2.696117, 1b = 0, name = 'A’)#value = A_av)#lb=0)

522 B_mhe = mhe.FV(value = 0.08670757, lb = 0, name = 'B’)#value = B_av)#Ib=0)

523 C.mhe = mhe.FV(value = 0.2234747, 1b = 0, name = 'C’)#value = C_av)#lb=0)

524 D_mhe = mhe.FV(value = 2.89168, lIb = 0, name = 'D’)#value = C_av)#lb=0)

525 A_mhe .STATUS = 1

526 B_mhe .STATUS = 1
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527 C_mhe .STATUS = 1

528 D_mhe.STATUS = 1

529

530 #input variables

531 Ta_K_mhe = mhe.MV(name = ’Ta_K_mhe’, value = output_df[ Drybulb Temp (C)’].values[—Ilen(mhe_time)])

532 HVAC.IO.mhe = mhe .MV(name = 'E_HVAC_per.on’) #add intial point?

533 Tg-K_mhe = mhe.MV(name = ’Tg_.K_mhe’, value = output_df[’Site Ground Temp (C)’].values[—Ilen(mhe_time)])

534 Ta_K_mhe .FSTATUS = 1

535 HVAC_IO.mhe .FSTATUS = 1

536 Tg-K_mhe .FSTATUS = 1

537

538 #state variables

539 u.change_mhe = mhe.SV(name = ’uchange’)

540 u_tracker-mhe = mhe.SV(name = ’utracker’)

541

542 #control varaibles

543 Tha_pred_K_mhe = mhe.CV(value = output_df[’Zone Air Temp (C)’].values[—len(mhe_time)], name = °Tha_pred_.K_mhe")

544 Tha_pred_K_mhe .STATUS = 1

545

546 #equations

547 mhe. Equation (u_change.mhe == HVAC.IO.mhe)

548 mhe. Equation (u_change_mhe.dt() == u_tracker_mhe)

549 mhe. Equation (Tha_pred_K_mhe . dt () == B_mhex(Ta_.K_.mhe—Tha_pred_K_mhe) + C_mhex(Tg_-K_mhe—Tha_pred_K_mhe) —
HVAC.IO_mhe * D_mhe — u_tracker-mhe # A_mhe)

550

551

552 # Global Options

553 mhe. options .IMODE = 5 # MHE

554 mhe. options .EV.TYPE = 2 # Objective type we a

555 mhe. options .NODES = 2 # Collocation nodes

556 mhe. options .MAXITER = 1000 #max number of iterations

557 mhe. options . TIME_SHIFT = 10

558

559 MHE_STATUS = False

560 mhe_sol_storage = {}

561

562 mhe. options .SOLVETIME

563 # output_df[’ mhe_sol’] = np.zeros(len(output_df))

564 #%%mhe during loop

565 if i_-array >= mhe_start_time and i.array % 10 == O:#sim_timestep_per_day:

566 Tha_pred_K_mhe .VALUE = output_df[’Zone Air Temp (C)’].values[—Ilen(mhe_time):]

567 Ta_K_mhe .VALUE = output_df[’Drybulb Temp (C)’][—len(mhe_time):] #normalize

568 HVAC_IO_mhe .VALUE = output-df[ 'HVAC I1/0’].values[—len (mhe_time) :]

569 Tg-K_mhe .VALUE = output_df[’Site Ground Temp (C)’][—len(mhe_time):] #normalize

570

571 print(’solving mhe’)

572 mhe. solve (disp = MHE_Debug, debug = MHE_Debug)

573

574 A_storage [ 'Timestep:%s solved:%s’ %(kStep ,MHESTATUS)] = [A_mhe.value [0]]

575 B_storage[ Timestep:%s solved:%s’ %(kStep ,MHE.STATUS)] = [B.mhe.value[0]]

576 C_storage [ Timestep:%s solved:%s’ %(kStep ,MHESTATUS)] = [C_mhe.value [0]]

577 D_storage[ 'Timestep:%s solved:%s’ %(kStep ,MHESTATUS)] = [D-mhe. value[0]]

578

579 #print solution values

580 if MHE.Debug == True:

581 print('B: " + str(B.mhe.value[0]))

582

583 #check and print solution status

584 if mhe.options .SOLVESTATUS == 1:

585 MHE.STATUS = True

586 else:
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587 MHESTATUS = False

588 if MHE.Debug == True:

589 input(”Press Enter to Continue”)

590

591 print ("MHE Solved = ° + str (MHESTATUS) )

592 print( Objective function = %s’ %mhe. options .OBJFCNVAL)

593

594 #store solutions in dataframe

595 mhe_sol = mhe.load_results ()

596 mhe_sol = pd.DataFrame.from_dict(mhe_sol)

597 mhe_sol_storage [ Timestep:%s solved:%s’ %(kStep ,MHE.STATUS)] = mhe_sol

598 solve_time_mhe . append (mhe. options .SOLVETIME)

599

600 #%% air conditioner load mhe

601 if i_array == mpc_start_time:

602 solve_time.-mpc = []

603 iterations_mpc = []

604 ACmhe = GEKKO(name = 'ACmhe’ , remote = False)

605

606 ACmhe_time = np.linspace (0, mpc_start_.time —1, mpc_start_time)

607 ACmhe. time = ACmhe_time

608

609 #parameters to estimate

610 HVAC_load_ACmhe = ACmhe.FV( name = 'HVAC_load_.ACmhe’) #in joules

611 HVAC_load_.ACmhe .STATUS = 1

612

613 #inputs

614 E_HVAC_per.on_.ACmhe = ACmhe.Param(name = 'E_HVAC_per_on’)

615

616 Ta-ACmhe = ACmhe.Param(name = ’Ta_ACmhe )

617

618 #variables to match data

619 E_HVAC_consumption.ACmhe = ACmhe.CV(value = 3000, name = "E_HVAC_consumption’)
620 E_HVAC_consumption_ACmhe . STATUS = 1

621 E_HVAC_consumption_.ACmhe . FSTATUS = 1

622

623 #Equations

624 ACmhe. Equation (E_HVAC_consumption.ACmhe == E_HVAC_per-on.ACmhe * HVAC_load_ACmhe * Ta_ACmhe)
625

626 # Global Options

627 ACmhe. options .IMODE = 5 # ACmhe

628 ACmhe. options .EV.TYPE = 2 # Objective type we a

629 ACmhe. options .NODES = 2 # Collocation nodes

630 ACmhe. options .MAX_ITER = 1000 #max number of iterations

631 ACmhe. options .MAX.TIME = 60x4#seconds

632

633 if i.array >= mpc.start_time and i.array % 10 ==

634 E_HVAC_per-on_.ACmhe .VALUE = output_df[ 'HVAC 1/O’ J[i-array —mpc_start_time:i.array]
635 Ta_.ACmhe .VALUE = output_df [’ Drybulb Temp (C)’][i.array —mpc_start_time:i_array]
636 E_HVAC_consumption_.ACmhe .VALUE = output_.df[ 'HVAC Power (W)’ ][i-array —mpc.start_time:i-array]/1e3
637

638 ACmhe. solve (disp = False)

639  #%% create weather prediciton array

640 il Forecasting == True and i_array >= mpc_start_time:

641 #initialize dicts for data

642 past_Drybulb_Temp.C_dict = {}

643 past_Misc_building_-Power_dict = {}

644 past-Total_Power_Generated_dict = {}

645

646 #change mpc array to array in minutes

647 mpc_min_array = np.array ([ 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100,
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648 110, 120, 180, 240, 300, 360, 480, 600, 720, 840, 960,

649 1200, 1440])

650 mpc._empty_array_mpc = np.zeros ([len(mpc_min_array [1:]) ,0])

651 P_misc_input_array = np.zeros ([len(mpc-min_array[1:]) ,1])

652 for i in range(len(P_misc_input_array)):

653 P_misc_input_array[i] = [0]

654

655 #create dictionary of data for forecasting

656 for time_ago in different_times:

657 past_Drybulb_Temp_C_dict[ temp_%s_minutes_ago’ %time.ago] = output_df[ Drybulb Temp (C)’][i_array — time_ago |#simf
Lc-to_k(

658 past_Misc_building_Power_dict[ misc_power_.%s_minutes_ago’ %time.ago] = output_df[ Misc building Power (W) ][
i_array — time_ago]

659 past_.Total_.Power_Generated_dict[ generated_power_-%s_minutes_ago’ %time_-ago] = output_df[ Total Power Generated (W)

"]li-array — time_ago]

660

661 #initialize arrays for predicted data to go into

662 Drybulb_Temp.C_future = np.zeros(len(mpc.-min_array[1:]))

663 Misc_building_-Power_future = np.zeros(len(mpc_min_array[1:]))

664 Total_Power_Generated W _future = np.zeros(len(mpc_min_array[1:]))

665

666 #make misc power prediction array

667 for k,1 in zip(range(len(Misc-building-Power_future)), mpc.min-array [1:]): #loop through whole array and every point
in mpc array(min) except for the current point

668 #make array for formula input

669 Misc_building_-Power_hist_array = np.zeros(len(P_misc_input_array[k]))

670

671 for i,j in zip(range(len(P_-misc-input.array[k])), P_-misc_input_array[k]):

672 Misc_building_Power_hist_array[i] = past_Misc_building_-Power_dict[ misc_power_%s_minutes_ago’ %int(j)]

673

674 #indicate hour of the predicted point

675 hour_indicator_param = np.zeros(24)

676 future_-time = output.df[’Date and Time’][i-array] + datetime.timedelta(seconds = 60)=1

677 hour_indicator_param [ future_time.hour] = 1

678

679 Misc_building_-Power_params = Misc_building_-Power_forecasting_param_dict[ predict %s minutes ahead’ %l ]

680 Misc_building_Power_future[k] = pred_X_min_ahead_point(Misc_building_Power_params , Misc_building_Power_hist_array ,
hour.indicator_param)

681

682 Misc-building-Power_future [ Misc_-building_-Power_future < 0] = 0

683 #make ta prediction array

684 for k,I in zip(range(len(Drybulb_Temp_C_future)), mpc.min_array [1:]): #loop through whole array and every point in mpc
array (min) except for the current point

685 #make array for formula input

686 Drybulb_Temp-C_hist_array = np.zeros(len(forecasting-index-array-mpcl[k]))

687

688 for i,j in zip(range(len(forecasting-index_-array_-mpc[k])), forecasting_index_array_-mpc/[k]):

689 Drybulb_Temp_C_hist_array[i] = past-Drybulb_Temp_-C_dict[ temp-%s_minutes_ago’ %j]

690

691 #indicate hour of the predicted point

692 hour_indicator_param = np.zeros(24)

693 future_-time = output.df[’ Date and Time ][i-array] + datetime.timedelta(seconds = 60)=1

694 hour_indicator_param [ future_time.hour] = 1

695

696 Drybulb_Temp-params = Drybulb_Temp.C_forecasting_-param-_dict[ predict %s minutes ahead’ %I]

697 Drybulb_Temp_C_future[k] = simf.c_to_k(pred_X_min_ahead_point(Drybulb_Temp_params, Drybulb_Temp_C_hist_array ,
hour.indicator_param))

698

699 #make pv power prediction array

700 for k,1 in zip(range(len(Total_.Power_-Generated_-W _future)), mpc_min_array[1:]): #loop through whole array and every

point in mpc array(min) except for the current point
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701 #make array for formula input

702 Total_Power-Generated_-hist_array = mpc_.empty_array_mpc

703

704 #indicate hour of the predicted point

705 hour_indicator_param = np.zeros (24)

706 future_-time = output.df[’ Date and Time’][i-array] + datetime.timedelta(seconds = 60)=1

707 hour.indicator_param [ future_time.hour] = 1

708

709 Total_Power_Generated_params = Total_Power_Generated_ W _forecasting_-param_dict[ predict %s minutes ahead’ %I]
710 Total_Power_Generated_W _future[k] = pred_-X_min_ahead_point(Total_Power_Generated_params ,

Total_-Power_-Generated_-hist_.array , hour.indicator_param)

711

712 Total _Power_Generated W _future [ Total _Power_Generated W _future < 0] = 0

713 #9%%

714 from scipy.interpolate import interpld

715

716 f_drybulb = interpld(mpc_min_array ,np.append(output_df[’ Drybulb Temp (C) ][i-array], simf.k_to_c(Drybulb_Temp_C_future
)), cubic’)

717

718 f_ppv = interpld (mpc.min_array ,np.append (output_df[’Total Power Generated (W)’ ][i.array],
Total_Power-Generated_-W _future))

719

720 f_pmisc = interpld (mpc-min_array ,np.append(output-df[ Misc building Power (W) ][i-array], Misc-building-Power_future),
‘cubic’)

721

722 H#IINPC

723 if i_array >= mpc_start_time and MPC_control == True: # skip a day so that weather can be predicted

724 #start values

725 if i_array == mpc_start_time:#start 60 minutes after mhe start

726 #%% model intialization

727 battery._state_storage = {}

728

729 mpc = GEKKO(name = 'MPC’ ,remote = False)#remote_solve, server = remote_server)

730 mpc.time = mpc_time

731

732 #parameters to estimate

733 A_mpc = mpc.FV(value = A_mhe NEWVAL, name = 'A’)#value = A_av)#Ib=0)

734 B_mpc = mpc.FV(value = B.mhe.NEWVAL, name = 'B’)#value = B.av)#lb=0)

735 C_mpc = mpc.FV(value = C.mhe .NEWVAL, name = °C’)#value = C.av)#lb=0)

736 D._.mpc = mpc.FV(value = D_mhe .NEWVAL, name = 'D’)

737 A_mpc .FSTATUS = 1

738 B_mpc .FSTATUS = 1

739 C_mpc .FSTATUS = 1

740 D_mpc.FSTATUS = 1

741

742 Ta_K_mpc = mpc.MV(name = ’Ta_K_mpc’, value = output_df[ Drybulb Temp (C)’].values[i-array])

743 Tg-K_mpc = mpc.MV(name = ’'Tg_.K._mpc’, value = output_df[’Site Ground Temp (C)’].values[i-array])

744 Ta_K_mpc .FSTATUS = 1

745 Tg_K_mpc .FSTATUS = 1

746

747 #manipulated variables

748 HVAC.IO.mpc = mpc.MV(name = 'E_HVAC_per.on’, 1b = 0, ub = 1) #add intial point?

749 HVAC_IO_mpc . FSTATUS = 1

750 HVAC_IO_mpc.STATUS = 1

751

752 #state variables

753 u.change_mpc = mpc.SV(name = 'uchange’)

754 u_-tracker.mpc = mpc.SV(name = ’"utracker’)

755

756 #control variables
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757 Tha_pred_K_mpc = mpc.CV(value = output.df[’Zone Air Temp (C)’].values[i-array], name = 'Tha_pred_-K_mpc’)#, lb =
Heating . SP_.T, ub = Cooling_.SP_T)

758 Tha_pred_K_mpc .FSTATUS = 1

759 Tha_pred_K_mpc.STATUS = 1

760 Tha_pred_K_mpc.SPHI = Cooling_SP_T

761 Tha_pred_K_mpc.WSPHI = 1000

762 Tha_pred_K_mpc .SPLO = Heating_SP_T

763 Tha_pred_K_mpc .WSPLO = 1000

764

765 #equations

766 mpc. Equation (u_change.mpc == HVAC_IO.mpc)

767 mpc. Equation (u_change_mpc.dt() == u_tracker.mpc)

768 mpc. Equation (Tha_pred_K_mpc.dt() == B_mpc=(Ta_.K_mpc—Tha_pred_K_mpc) + C_mpcs(Tg_K.mpc—Tha_pred_K_mpc) —
HVAC.IO.mpc % D.mpc — u_tracker_mpc * A_mpc)

769

770 # push HVACIO.mpc to 0 or 1

771 pusher_x = 9e—7 #works with step pricing

772

773 mpc. Equation(—pusher_x *(HVAC.IO.mpc—.5)#%2 + pusher.x/4 <= le—8)

774

775 #Battery Model

776 #whole baterry parameters

777 SOC.initial = 0.001

778 #initial state of charge

779 V_battery = 50 # battery voltage

780 total_batt_energy = 14%1000 # totale bathere energy in Ws

781 round_trip_efficiency = .90 #efficiency of battery in and out

782 max_-draw = 5000 #kW limit on charge and discharge

783

784 # Individual Lithium—Ion battery parameters

785 EO_batt = 3.7348 # (V) [battery constant voltage]

786 R_batt = 0.09 # (Ohms) [internal resistance]

787 K_batt = 0.00876 # (V) [polarization voltage]

788 A_batt = 0.468 # (V) [exponential zone amplitude]

789 B_batt = 3.5294 # (Ah)"—1 [exponential zone time constant inverse]

790 Q_batt = 1 # (As) [battery capacity]

791 V_lithium_batt = 3.6 # (V) [electrochemical potential of lithium]

792

793 N_series = N_series = np.ceil(V_battery/V_lithium_batt)

794 capacity_-N_series = total_batt_-energy /(N_.series=V_lithium_batt)

795 N_cells = np.ceil(capacity_N_series/Q_batt)

796 Capacity_discharged_.0 = —((SOC_initial * Q_batt)—Q_batt)

797

798 #battery pre—calculations

799 if Include-battery == True:

800 charge_battery = mpc.SV(value = 0, 1b = 0, name = “charge_battery’)

801

802 p-AC.DC.inv = mpc.SV(value = 0, name = “p_.AC.DC_.inv’)

803

804 current-into_batt = mpc.SV(value = 0, name = “current-into_batt’) #Amps

805

806 indv_cell_current_into_batt = mpc.SV(value = 0, name="indv_cell_current_into_batt’)#Amps

807

808 Capacity_discharged = mpc.SV(name = "Capacity_discharged’, value = Capacity_discharged_0, Ib = 0, ub = Q_batt
) #AH

809

810 SOC._mpc = mpc.SV(value = SOC.initial , 1b=0, ub=1, name='SOC")

811

812 indv_cell_current_outof_batt = mpc.SV(value = 0, name="indv_cell_current_outof_batt ’)#Amps

813

814 current_outof_batt = mpc.SV(value = 0, name = ’current_outof_batt’) #Amps
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815
816
817
818
819
820

821
822
823
824
825
826
827
828
829
830
831
832
833
834

836
837
838
839
840

841
842
843
844
845
846
847
848
849

850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872

p-DC.AC.inv = mpc.SV(value = 0, name = “p_.DC_AC_inv’)

discharge_battery = mpc.SV(value = 0, 1b = 0, name = ’discharge_battery’)

P_batt_storage.mpc = mpc.MV(name = ’P_batt_storage.mpc’)#., Ib = —5000, ub = 5000) #positive means discharging
#Watts

P_batt_storage_mpc .STATUS = 1

P_batt_storage-mpc .FSTATUS = 1

P_batt_storage_mpc .LOWER = —max_draw/le3

P_batt_storage.mpc .UPPER = max_draw/le3

S3_mpc = mpc.SV(lb = 0, name = ’Slack var3")

S4_mpc = mpc.SV(lb = 0, name = ’Slack var4’)

mpc. Equation (discharge_battery == P_batt_storage_-mpc + S3_mpc)

mpc. Equation (charge_battery == — P_batt_storage_-mpc + S4_mpc)

mpc. Equation (P_batt_storage_mpc == S4_mpc — S3_mpc)

mpc. Equation (S3_mpc*S4_mpec <= 0)

mpc. Equation (p_.AC_DC_.inv == charge_battery % np.sqrt(.9))

mpc. Equation(current_into-batt == p_AC.DC.inv/V_battery) # calculate current going into battery

mpc. Equation (indv_cell_current_into_batt == current_into_batt=le3/N_cells)

mpc. Equation (Capacity_discharged.dt() == indv_cell_current_outof_batt — indv_cell_current_into_batt)

mpc. Equation (SOC_.mpc == (Q_batt — Capacity_discharged) / Q-_batt) #soc is the capacity of the battery minuse
what is discharged

mpc. Equation (indv_cell_current_outof_batt == current_outof_battxle3/N_cell
mpc. Equation (current_outof_batt == p_.DC_AC.inv/V_battery)
mpc. Equation (p.DC_AC_inv # np.sqrt(.9) == discharge_battery )

else:

P_batt_storage.mpc = mpc.Const(value = 0, name = ’P_batt_storage_mpc’)

###### added mpc equations and variables

s)

Demand_mpc = mpc.SV(name = 'Demand’)

Grid_-to_Demand_-mpc = mpc.SV(name = *Grid_to_Demand_mpc )#, Ib = 0)
Grid_to_Demand_mpc .LOWER = 0

Sell_to_grid = mpc.SV(value = 0, name = ’Sell back to grid )#, Ib = 0)
Sell_to-grid .LOWER = 0

Profit_mpc = mpc.CV(value = .001, name = ’profit-mpc’)
Profit.mpc .STATUS = 1

Profit_mpc .COST = 10 #negative maximize
Sl_mpc = mpc.SV(Ib = 0, name = ’Slack varl’)
S2_mpc = mpc.SV(Ib = 0, name = ’Slack var2’)

P_misc.mpc = mpc.MV(value = 3, name = ’P_misc_mpc’)

P_misc_mpc .FSTATUS = 1

P_misc.mpc .STATUS = 0

#

TOD_Pricing_mpc = mpc.Param (name = *TOD_Pricing_mpc’) #cents/kWh
net_-meter_pricing-mpc = mpc.Param(name = ’net.meter_pricing.mpc’) #cents/kWh

optimize_profit = mpc.Param(name = ‘optimize profit’)
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873
874 Utilities_.charge.mpc = mpc.SV(value = 0, name = ’Utilities_.charge_.mpc’, 1b = 0) #dont name it cost—it causes

problems with gekko code

875

876 if Net.metering == True:

877 Revenue.mpc = mpc.SV(name = ’Revenue_mpc’, lb = 0)

878

879 else:

880 Revenue_mpc = mpc.Const(name = ’Revenue_mpc’, value = 0)

881

882 if Include_solar == True:

883 P_PV_mpc = mpc.MV(name = 'P_PV_mpc’, value = 0)#,value = outputs_initialize_df[  Total Power Generated (W)
1o

884 P_PV_mpc.FSTATUS = | #recieve measurement

885 P_PV_mpc .STATUS = 0

886 else:

887 P_PV_mpc = mpc.Const(value = 0, name = 'P_PV_mpc’)

888

889 P_HVAC_load_-mpc = mpc.FV(value = HVAC_load_ACmhe .NEWVAL, name = 'P_HVAC_load_mpc’)

890 P_HVAC_load_mpc .FSTATUS = 1

891

892 #Energy Balances

893 mpc. Equation (Demand_-mpc == P_misc_.mpc + (HVAC_.IO.mpc*P_HVAC_load-mpc*Ta_K_.mpc) — P_PV_mpc)

894 mpc. Equation (Grid_to_.Demand_.mpc + P_batt_storage_mpc — Sell_to_grid >= Demand.mpc)

895 mpc. Equation (Grid_to_Demand_mpc == Demand_.mpc — P_batt_storage_mpc + Sl_mpc)#P_Demand_mpc

896 mpc. Equation (Sell_to_-grid == P_batt_storage-.mpc — Demand-mpc + S2_mpc)

897 mpc. Equation (P_batt_storage_mpc — Demand_.mpc == Sl_mpc — S2_mpc)

898 mpc. Equation (S1-mpc*S2_mpc <= 0)

899

900 #financial calculations

901 mpc. Equation (Revenue_-mpc == Sell_to_grids* 1/60 = net_meter_pricing-mpc/100)

902 mpc. Equation (Utilities_charge_mpc == Grid_-to_.Demand_mpc*1/60 * TOD_Pricing.mpc/100) #this value magnitude is
important for solving

903 mpc. Equation (Profit_mpc == (Revenue.mpc — Utilities_charge_mpc)*—optimize_profit)

904

905 ## Global Options

906 mpc. options .IMODE = 6 # MPC

907 mpc. options .CV.TYPE = 1 # Objective type #use with sphi and splo (1)/ sp (2)

908 mpc. options .NODES = 2 # Collocation nodes #causing errors

909 mpc. options .SOLVER = 3 # [=APOPT, 3=IPOPT

910 mpc. options .MAXITER = 5000

911 mpc. options .EV.TYPE = 2

912 mpc. options . TIME_SHIFT = 1

913 MPC.STATUS = False

914 mpc_sol_storage = {}

915

916 mpc. options . TIME_SHIFT = 0

917 mpc. options .COLDSTART = 2

918 mpc. solve (disp = MPC_Debug, debug = MPC_Debug_break)

919 mpc. options . TIME_SHIFT = 1

920 #%% MPC during loop

921 if i-array % 10 ==

922 #update parameters from mhe

923 if Include_battery == True:

924 if i_.array >= mpc_start_time + 10:

925 current_soc = battery._state_storage [ Timestep:%s’ %(i-array —10)][ "SOC’ ][49]

926 Capacity-discharged .MEAS = —((current-soc * Q_batt)—Q_batt)

927 else:

928 Capacity_discharged .MEAS = —((SOC._initial * Q_batt)—Q_batt)

929

930 A_mpc.MEAS = A_mhe .NEWVAL
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931 B._mpc.MEAS = B_mhe .NEWVAL

932 C.mpc.MEAS = C_mhe .NEWVAL

933 D_mpc.MEAS = D_mhe .NEWVAL

934 P_HVAC_load-mpc .MEAS = HVAC_load_ACmhe .NEWVAL

935

936 #variables that should be predicted and sent to the mpc

937 price_time_array = [i%60%60+(i-array=60) for i in mpc_time] #TODO check to see if this really should be 0 after

sim period ends
938 TOD_Pricing_array = Total_price_per_timestep-df[ price’].loc[Total_price_per_timestep.-df[ time (sec)’].isin(
price_time_array)] #cents/kWh

939 TOD_Pricing-mpc .VALUE = TOD_Pricing-array

940

941 net_meter_pricing_array = TOD_Pricing_array != 0

942 net.meter_pricing.-array = net_-meter_-pricing._array.astype(bool).astype(int) % net.meter_price
943 net_meter_pricing_mpc .VALUE = net_meter_pricing_array

944

945 optimize_profit_array = (TOD_Pricing_array != 0).astype(int)

946 optimize_profit .VALUE = optimize_profit_array

947 if Forecasting == True:

948 Ta.K_mpc.VALUE = f_drybulb (mpc_time60)

949 P_PV_mpc.VALUE = np.round(f_ppv(mpc_-time=60)/1e3, 3)

950 P_misc_mpc .VALUE = f_pmisc(mpc_time=60)/1e3

951 Tg-K-mpc.VALUE = output-df[’Site Ground Temp (C)’]J[i-array]+np.ones(len(mpc-time))
952 else:

953 Ta_K_mpc.MEAS = output_df[’Drybulb Temp (C)’][i.array]

954 P_PV_mpc.MEAS = output_df[ Total Power Generated (W) ][i-array ]

955 P_misc_mpc .MEAS = output_df[’ Misc building Power (W) ][i_-array]

956

957 #variables that should be predicted by mpc into the future(create bias)

958 HVAC_IO-mpc.MEAS = output-df[ 'HVAC 1/O’][i-array]

959 Tha_pred_K_mpc .MEAS = output_df[’Zone Air Temp (C) ][i-array]

960

961 if i_array >= sim_timestep_-tot — (1440 — mpc.start_time % 1440) and Include_battery == True:
962 end_of_day = (sim_timestep_-tot — mpc_start_time)/60 — (i-array — mpc_start_time)/60
963

964 fix-loc = np.where(np.round(mpc_-time ,3) == round(end-of_day ,3))

965 mpc. fix (SOC.mpe, fix_loc [0][0], SOC._initial)

966

967 print(’solving MPC")

968 mpc. solve (disp = MPC_Debug, debug = MPC_Debug_break)

969

970

971

972 ###make changes to actual process

973 if mpc.options.SOLVESTATUS == 1:

974 MPC_STATUS = True

975 il HVACIO.mpc .NEWVAL >= .5:

976 HVACSTATUS = 2 #turn hvac cycle on (still stays within temp limits)
977 else:

978 HVACSTATUS = 1 #turn hvac off

979

980 else:

981 if mpc.options.APPINFO == —1:

982 MPC_STATUS = False

983 print(’Stopping from Max Iterations’)

984 if HVAC.IO.mpc.NEWVAL >= .5:

985 HVACSTATUS = 2 #turn hvac cycle on (still stays within temp limits)
986 else:

987 HVACSTATUS = 1 #turn hvac off

988 else:

989 MPC_STATUS = False
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990

991

992

993

994

995

996

997

998

999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050

print ("MPC Solved = ° + str (MPC.STATUS) )
print(’Objective function = %s’ %mpc.options.OBJFCNVAL)

#store solutions in dataframe
mpc_sol = mpc.load_results ()
mpc.-sol = pd.DataFrame.from_dict(mpc_sol)

mpc_sol_storage [ Timestep:%s sovled:%s:" %(i.array ,MPCSTATUS)] = mpc_sol

solve_time_mpc.append (mpc. options .SOLVETIME)
iterations_-mpc .append(mpc. options .ITERATIONS)

#%% regular thermostat control

elif i_array >= mpc._start_time — 300 and MPC_control == True: #control temp if mpc is not turned on
if output.df([’Zone Air Temp (C) ][i-array] > Cooling.SP_.T:
HVACSTATUS = 2 #turn hvac cycle on (still stays within temp limits)
elif output_df[’Zone Air Temp (C) ]J[i-array] < Cooling-SP.T — 3%5/9:#Heating.SP_T:
HVACSTATUS = 1 #turn hvac off

else: #control temp if mpc is not turned on
if output.df[’Zone Air Temp (C) ][i.array] > Cooling.SP_T:
HVACSTATUS = 2 #turn hvac cycle on (still stays within temp limits)
elif output_df[’Zone Air Temp (C)’][i-array] < Cooling_.SP.T — 20x%5/9:#Heating SP_T:
HVACSTATUS = 1 #turn hvac off

#%% calulate what actually happens #IODO fix after scaling
if i.array >= mpc.start_time and MPC_control == True: #if mpc has solved at least once
if Include_battery == True:
Real_power_storage = P_batt_storage_mpc .NEWVAL # 1le3 #positive if discharging
else:
Real_power_storage = 0

#profit with battery and pv

if output.df[ Grid-Requirement (no battery)’][i-array] > Real_power.storage:
real_P_from_grid = output_df[’Grid_Requirement (no battery) ][i-array] — Real_power_storage
real_P_sold_to_grid = 0

else:
real_P_sold_to_grid = Real_power_storage — output_df[’ Grid_Requirement (no battery)’ ][i.array]

real_.P_from_grid = 0

Act_-Revenue.mpc = real_-P_sold_-to_-grid/1000 * (1/60) = output-df[ NETMETERING PRICING’ J[i-array ]/100
Act_Utilities_.charge_mpc = real_P_from_grid/1000 = (1/60) % output_df[ TOD PRICING’ ][i-array ]/100

Act_profit = Act_.Revenue.mpc — Act_Utilities_charge_mpc

results_df [ optimized profit’][i.array] = Act_profit

#profit of house optimized but no battery

if output.df[ Grid_-Requirement (no battery)’][i-array] > 0:
real_P_from_grid = output.df[’Grid_Requirement (no battery)’ ][i-array]
real_.P_sold_to_grid = 0

else:
real_-P_sold_-to_-grid = — output_-df[’Grid_-Requirement (no battery)’ ][i-array]

real _.P_from_grid = 0

Act_Revenue.mpc = real_P_sold_to_grid/1000 % (1/60) = output_df[ NETMETERING PRICING’ |[i.array ]/100
Act_Utilities_.charge_mpc = (real_-P_from_grid)/1000 * (1/60) * output.df[’TOD PRICING  ]J[i-array]/100

Act_profit = Act_.Revenue_.mpc — Act_Utilities_.charge_mpc

results_df [ actual profit with solar’][i-array] = Act_profit
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1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091

1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105

1106
1107
1108
1109

#profit of house optimized no pv or battery

Act_Utilities_.charge_mpc = output_df[ Act Demand’ J[i-array]/1000 s (1/60) = output.df[ TOD PRICING ]J[i-array]/100

Act_profit = — Act_Utilities_charge_mpc

results_df [ actual profit no batt or solar’][i-array] = Act_profit
#%% Real time plotting
if Real_-time_Plotting == True:

i_plot = kStep—1

if MHE_estimation == True:
if i_array % 10 ==
if kStep > mhe_start_time:
mhe_input_array = args_input = np.ones([10,len(mhe_time)])

mhe_input_df = pd.DataFrame(mhe_input_array)

mhe_input_df.iloc[0] = dates.date2num(output_df[ Date and Time ][—len(mhe_time) :]. values)

mhe_input-df.iloc[1] = simf.c_to_-f(output_df[’Zone Air Temp (C)’][—len(mhe-time):]. values)

mhe_input_df.iloc[2] = simf.c_to_f(output_df[ Drybulb Temp (C)’][—len(mhe_time):]. values)

il i-array < mpc-start-time:
mhe_input_df.iloc[5] = simf.c_to_.f(Cooling_-SP_T) = np.ones(len(mhe_time))
mhe_input_df.iloc[6] = simf.c_to_f(Heating_.SP_T) % np.ones(len(mhe_time))
else:
mhe_input_df.iloc[5] = simf.c_to_f(Cooling_.SP_T) = np.ones(len(mhe_time))
mhe_input_df.iloc[6] = simf.c_to-f(Heating.SP_.T) = np.ones(len(mhe_time))

mhe_input_df.iloc[7] = simf.c_to_f(np.array(Tha_pred_K_mhe.VALUE))

mhe_input_df.iloc[8] = output_df[ 'HVAC Power (W) ][i-array — len(mhe_time):i_array].values

mhe_input-df.iloc[9] = output_df[ 'HVAC I1/O’][i-array — len(mhe_-time):i-array].values

plt.pause(l)

fig.savefig (" plots\\%s\\%s\\mhe_plots\\mhe_timestep_%s_tod.eps’ %(location_.name , house_label , i_array))

if MPC_control == True:
if i-array % 10 == 0:
if kStep > mpc_start_time:
mpc_input_array = args_input = np.ones([15,len(mpc_time)])
mpc-input.df = pd.DataFrame(mpc_-input_array)
#change mpc array to datetimes

for i in range(len(mpc-time)):

mpc_input_df.iloc[0,i] = output_df[ Date and Time’][i-array] + datetime.timedelta(minutes = 1) % (np.

array (mpc_time#60)) [i]
mpc_input_df.iloc[1] = simf.c_to_-f(np.array (Tha_pred_K_mpc.VALUE))
mpc_input_df.iloc[2] = simf.c_to_f(np.array (Ta_K_mpc.VALUE))
if Include_-battery == True:

mpc_input_df.iloc[3] = np.array (SOC_mpc.VALUE)

mpc_input_df.iloc[4] = np.array (HVACIO.-mpc.VALUE)#np.round ()
mpc_input_df.iloc[5] = np.array (TOD_Pricing-mpc.VALUE)
mpc_input_df.iloc[6] = np.round(net.meter_pricing_mpc .VALUE)

mpc_input_df.iloc[7] = simf.c_to_f(Cooling_.SP_T) = np.ones(len(mpc_time))
mpc-input-df.iloc[8] = simf.c_-to_-f(Heating-SP_.T) = np.ones(len(mpc-time))

mpc_input_df.iloc[I1] = np.array (P_.PV_mpc.VALUE)x1e3
mpc_input_df.iloc[12] = np.array(Grid-to.Demand-mpc.VALUE):1e3

mpc_input_df.iloc[13] = (np.array (P.HVAC_load_-mpc .VALUE) # np.array (HVACIO_.mpc.VALUE) + np.array (

P_misc.mpc .VALUE) ) x#1e3
mpc_input_df.iloc[14] = np.array(Sell_to_grid .VALUE)xle3

plt.pause (1)
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1110 fig2.savefig(’plots\\%s\\%s\\mpc_plots\\mpc_timestep_-%s_tod.eps’ %(location_name , house_label, i_-array))

1111 #%% track changes in real system

1112 if i_array >= mpc_start_time and MPC_control == True and i_array % 10 == 0 and Include_battery ==True:

1113 if i_array == mpc.start_time:

1114 SOC_battery = SOC_initial

1115

1116 clse:

1117 SOC_battery = battery_state_storage [ Timestep:%s’ %(i-array — int(mpc_time[1]%60))][ SOC’].iloc[—1] #remember soc

1118

1119 if P_batt_storage_mpc .NEWVALxle3 >= 0:

1120 batt_efficiency = I/np.sqrt(.9)

1121 else:

1122 batt_efficiency = np.sqrt(.9)

1123

1124 battery_model_res = 50

1125 battery_current = P_batt_storage-mpc .NEWVAL«1e3/50=np.ones(battery-model_res)=«batt_efficiency

1126 battery.-time = np.linspace (0, mpc_time[1]%60, battery_model_res)

1127 battery.-real = Battery(battery_current, battery_time , total_batt_energy , V_battery, SOC_battery,l1,1,1,0)

1128

1129 battery_state_storage [ Timestep:%s’ %(i-array)] = battery.real

1130

1131 if AC_force_off == True:

1132 HVACSTATUS = 1 #turn hvac off

1133

1134 if kStep != sim_timestep_tot:

1135 SP.LO = T.SP_df[ Heating SP’][i-array]

1136 SP_HI = T_SP_df[ Cooling SP’][i-array]

1137

1138 #tsethea , tsetcoo, hvac i/o, hvac status

1139 setpoints = [SP.LO, SP.HI, HVACIO[i.array ], HVACSTATUS] #thrid entry is to control the HVAC system NoAction (0),
ForceOff (1), CycleOn (2), and CycleOnZoneFansOnly (3)

1140 #

1141 ep.write(ep.encode_packet_simple (setpoints , i-array = deltaT)) #write new value to energyplus simulator

1142

1143 #%%

1144 kStep = kStep + 1 #add one to iteration

1145

1146 ep.close () #close energyplus after simulation

1147

1148 except ImportError:

1149 print(’solver results error shutting down ep’)
1150 ep.close ()

1151

1152 except KeyboardInterrupt:

1153 print(’shutting down ep’)

1154 ep.close ()

1155

1156 #%%run base case for comparison

1157 print(” ")

1158

1159 pyEp.set_eplus_dir(Eplus_file_location) #sets energyplus path

1160 builder = pyEp.socket_builder(path_to_-buildings) #creates exe path

1161 configs = builder.build() # Configs is [port, building_folder_path , idf]

1162

1163 #intialize sim files (in seperate .py file)

1164 initialize_sim_files.initialize (BEopt_installation_path , Eplus_file_.location , path_to_buildings , Start_date.month, End._date.month,
Start_date .day + 2, End.date.day, Timesteps, location-.name, Cooling-SP.T, 0)

1165 #run simulator

1166 ep_-base = pyEp.ep_process(’localhost’, configs[0][0], configs[0][1], weather_name)

1167

1168 outputs_base = []
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1169

1170 EPTimeStep = Timesteps

1171 SimDays = ((End_date — Start_date).days)-2

1172 kStep =1

1173 MAXSTEPS = int(SimDays#24«EPTimeStep) #

1174 deltaT = (60/EPTimeStep)*60; #seconds per timestep

1175

1176 while (kStep — 1 < MAXSTEPS) :

1177 i_array = kStep — 1

1178 output_base = ep_base.decode_packet_simple(ep_base.read())

1179 outputs_base.append(output_base)

1180

1181 output_base_df = pd.DataFrame.from_records (outputs_base , columns =

1182 ['Drybulb Temp (C)’,’Zone Air Temp (C)’,

1183 *Cooling Temp SP (C)’, ’Heating Temp SP (C)’,

1184 *Air System Total Cooling Energy (J)’, ’Total Facility Power Demand (W)’ ,

1185 "HVAC Power (W)’, "Total Power Generated (W)’ ,

1186 site diffuse solar radiation’ , ’site direct solar radiation’,

1187 "site ground relected solar radiation’, ’pv array eff’,

1188 'pv cell temp’, ’pv short circuit current’, ’open circuit voltage’,

1189 "Relative Humidity’, *Wind Speed’, ’Dewpoint’, ’Precip Depth’,

1190 *Rain Status’, ’Sky Clearness’])

1191

1192 output_base_df [ Misc building Power (W)’] = output_base_df[ Total Facility Power Demand (W)’] — output_base_df[ HVAC Power (W)
]

1193 output_base_df [ Water VP (hPa)’] = (output_base.df[ Relative Humidity *]/100)%6.105%np.exp((17.27+ output_base_df[ Drybulb Temp
(C)°1)/(237.7 + output_base_df[ Drybulb Temp (C)’]))

1194 output-base_-df[ Apparent Temp (C)’] = output-base_-df[ Drybulb Temp (C)’] + .348 * output_-base_df[’ Water VP (hPa)’] — .7 =
output_base_df [ Wind Speed’]

1195 + .7 % ((output_base_df[’site diffuse solar radiation’] + output-base_df[ site direct solar radiation
'] + output_base_df[’site ground relected solar radiation’])

1196 /(output_base_df[ Wind Speed’] + 10)) — 4.25 #TODO check the radiation terms

1197

1198 output_base_df [ 'HVAC 1/0°] = output_base_df [ "HVAC Power (W)'] != 0

1199 output-base_-df [ 'HVAC 1/0’] = output_base_-df[ 'HVAC 1/0°].astype(bool).astype(int)

1200 output_base_df [ Timestep’] = range (kStep)

1201 output_base_df [ Date and Time’'] = Start_date + datetime.timedelta(seconds = 60)*xoutput_base_df[ Timestep ]

1202

1203 output_base_df [ Act Demand’] = output_base_df[ Misc building Power (W)'] + output_base.df[ 'HVAC Power (W)’]

1204 AC_DC.invert_eff = np.sqrt(.9) #this is to account for energy in and energy out losses

1205 output_base_.df [ Grid_-Requirement (no battery)’] = output_base_df[ Act Demand’] — output_base_df[ Total Power Generated (W)’]
#+ AC_DC_invert_eff

1206 output_base_df [ "TOD PRICING'] = Total_price_per_-timestep-df[ price J[:len(output_base_-df)]

1207 output_base_df [ 'NETMETERING PRICING’] = np.ones(len(output_base_df)) * net_meter_price

1208

1209 if output_base.df[ Grid_.Requirement (no battery)’ J[i-array] > 0:

1210 real_P_from_grid = output-base_df[’Grid_-Requirement (no battery)’ J[i-array]

1211 real_P_sold_to_grid = 0

1212 else:

1213 real_P_sold_-to_grid = — output_base_df[’Grid_-Requirement (no battery)’][i-array]

1214 real_P_from_grid = 0

1215

1216 Act_Revenue.mpc = real_P_sold_to_grid/1000 =« (Timestep-size/60) = output_base_df[ NETMETERING PRICING  J[i-array]/100

1217 Act_Utilities_charge_mpc = real_ P_from_grid/1000 % (Timestep_size/60) * output_base_df[ TOD PRICING ][i.array]/100

1218 Act_profit = Act_Revenue_mpc — Act_Utilities_.charge_-mpc

1219

1220 results_df[ actual profit with solar normal temp control’ ][i-array] = Act-profit

1221

1222

1223 if output_base._df[’Zone Air Temp (C)’][i-array] > Cooling.SP_T:

1224 HVACSTATUS = 2 #turn hvac cycle on (still stays within temp limits)
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1225 elif output_-base_-df[ Zone Air Temp (C)'][i-array] < Cooling.SP.T — 5%5/9:#Heating.SP_T:

1226 HVACSTATUS = 1 #turn hvac off

1227

1228 if kStep != sim-timestep-tot:

1229 SP.LO = T_SP_df[ Heating SP’][i_.array]

1230 SP_HI = T_SP_df[’Cooling SP’][i-array]

1231

1232 if i_array % 50 == 0:

1233 print(’Step %s complete’ %i-array)

1234

1235 setpoints_base = [SP.LO, SP_HI, HVAC.IO[i.array ], HVACSTATUS]
1236 ep_base.write (ep-base.encode_packet_simple(setpoints_base , (kStep—1) * deltaT))
1237 kStep = kStep + 1

1238 ep-base.close ()

1239 #9%%

1240 plt.close (" all’)

1241

1242 fig3, (ax31, ax32, ax33, ax34) = plt.subplots(4.,1)
1243 #setup figure

1244 fig3 .tight_layout ()

1245 fig3.set-figheight(8)

1246 fig3 .set_figwidth (15)

1247 ax32.2 = ax32.twinx ()

1248

1249 mpc_hour_locator = dates.HourLocator(interval = 2)
1250 mpc-hour_formatter = dates.DateFormatter (%I %p’)
1251 mpc._min_locator = dates.MinuteLocator(interval = 30)
1252

1253 complete_input_array = args-input = np.ones([15,3])
1254 complete_input_df = pd.DataFrame(complete_input_array)
1255

1256 def complete_frames () :

1257 while True:

1258 yield complete_input_df

1259

1260 def subplot.31(args):

1261 #clear plot

1262 ax31.cla()

1263

1264 #set data

1265 t = complete_input_df.iloc[0].values

1266 Tha_pred = complete_input_df.iloc[1].values

1267 Ta_pred = complete_input_-df.iloc[2].values

1268

1269 SP_HI = complete_input-df.iloc[7].values

1270 SP.LO = complete_input_df.iloc [8]. values

1271

1272 #setup subplots

1273 ax31.set_title (' Temperatures’)

1274 ax31.set_ylabel ("Temp (F)’)

1275 for tick in ax31.get_xticklabels ():

1276 tick.set_rotation (45)

1277 ax31.xaxis.set-major_locator (mpc_hour_locator)

1278 ax31.xaxis.set_major_formatter (mpc_hour_formatter)

1279 ax31.xaxis.set-minor_-locator (mpc.-min_locator)

1280

1281 #plot data

1282 ax31.plot(t, Tha_pred , color="xkcd:black’, Marker = "o’, markersize = 2.5, label = r’$T_{air, inside}$’),
1283 ax31.plot(t, Ta_pred , color="xkcd:red’, Marker = ’o’, markersize = 2.5, label = r’ $T_{air .ambient}$")
1284 ax31.plot(t,SP.HI, color="b’", linestyle = "~ , label = r $SP_{HI}$ )#SPHI_line_mhe.sect_data(t,SP_hi)
1285 ax31.plot(t,SP.LO , color="r’, linestyle = ', label = r’ $SP_{LO}$ )#SPLO_line_mhe.set_data(t,SP_low)
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1287
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1289
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1319
1320
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1322
1323
1324
1325
1326
1327
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1345
1346

def

def

#post legend

return ax31.legend(loc="center left’, bbox_to_anchor=(1, 0.5))

subplot_32 (args):
#clear plot
ax32.cla()
ax32_2.cla()

#set data

t = complete-input_df.iloc [0].values
Batt_.SOC = complete_input_df.iloc [3].values
IO_HVAC = complete_input_df.iloc [4]. values

#setup subplots

ax32.set_title ('AC Status and Battery SOC’)

ax32.set_ylabel ("AC STATUS")

ax32.set_ylim ([0,1.1])

for tick in ax32.get_xticklabels ():
tick.set_rotation (45)

ax32.xaxis.set-major_locator (mpc-hour_locator)

ax32.xaxis.set_major_formatter (mpc_hour_formatter)

ax32.xaxis.set-minor-locator (mpc-min_locator)

ax32_.2.set_ylabel ('BATT SOC’, rotation = 270, labelpad=20)
ax32.2.set_ylim ([0,1.1])

for tick in ax32.2.get_xticklabels ():
tick.set_rotation (45)

ax32.2.xaxis.set.major_-locator (mpc-hour_locator)

ax32.2.xaxis.set-major_formatter (mpc_-hour_formatter)

ax32.2.xaxis.set_minor_locator (mpc.min_locator)

#plot data

ax32.plot(t[0::10], Batt_.SOC[0::10], color="xkcd:green’, label = r’$SOCS$’, ls="steps’),
ax32_.2.plot(t, IO.HVAC , color="xkcd:red’, label = r SHVACS $1/0$°, ls="steps’)

ax32 . fill_between (t[0::10], O, Batt_.SOC[0::10], color="xkcd:green’, alpha = .1)
ax32.2.fill_between (t, 0, IO.HVAC, color="xkcd:red’, alpha = .1)

hl, 11 = ax32.get_legend_-handles_labels ()
h2, 12 = ax32.2.get_legend_handles_labels ()

#post legend
return ax32.legend (h1+h2, 11412, loc="center left’, bbox_to_.anchor=(1.055, 0.5))

subplot_33 (args):
#clear plot
ax33.cla()

#set data
t = complete_input_df.iloc [0]. values
TOD.price = complete_-input_-df.iloc[5].values

Netmetering_price = complete_input_df.iloc[6].values

#setup subplots

ax33.set_title (" Pricing ")

ax33.set_ylabel (’Cents/kWh")

for tick in ax33.get_xticklabels ():
tick.set_rotation (45)

ax33.xaxis.set-major_locator (mpc-hour_locator)

ax33.xaxis.set_major_formatter (mpc_hour_formatter)
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1347 ax33.xaxis.set-minor_locator (mpc-min_locator)

1348 ax33.set.ylim (bottom = 0, top = 25)

1349 #plot data

1350 ax33.plot(t, TOD-_price , color="r’, label = r’$TODS$ $\$$', Is="steps’)

1351 ax33.plot(t, Netmetering_price, color="g’, label = r’S$Netmetering$ $\$$°, ls=’steps’)
1352 return ax33.legend(loc="center left’, bbox_-to.anchor=(1, 0.5))

1353

1354 def subplot.34 (args):

1355 #clear plot

1356 ax34.cla()

1357

1358 #set data

1359 t = complete_input_df.iloc [0].values

1360 PV_prod = complete_input_df.iloc[11].values

1361 P_from_grid = complete_input_df.iloc[12].values

1362 P_to_grid = complete_input_-df.iloc[14].values

1363 #setup subplots

1364 ax34.set_title ('Net Energy’)

1365 ax34.set_ylabel (’Usage/Production (W)’)

1366 # ax34.set_ylim ([ —-2000,6500])

1367 for tick in ax34.get_xticklabels ():

1368 tick.set_rotation (45)

1369 ax34 . xaxis.set-major-locator (mpc-hour_locator)

1370 ax34 . xaxis.set-major_formatter (mpc_hour_formatter)

1371 ax34 . xaxis.set_minor_locator (mpc_min_locator)

1372

1373 #plot data

1374 ax34.plot(t, PV_prod , color="xkcd:orange’, label = r’$Solar$ $Power$ S$Produced$’, ls=’steps’)
1375 ax34.plot(t, —P_from_grid, color="xkcd:red’, label = "Power from grid’, ls="steps’)
1376 ax34.plot(t, —P_to_grid , color="xkcd:green’, label = "Power sold back to grid’, ls="steps’)
1377 ax34.plot(t, np.zeros(len(t)), color="xkcd:black”)

1378 ax34 . fill_between (t, 0, —P_from_grid, color="xkcd:red’, alpha = .1)

1379 ax34 . fill_between (t, 0, —P_to_grid, color="xkcd:green’, alpha = .1)

1380 return ax34.legend (loc="center left’, bbox_-to_anchor=(1, 0.5))

1381

1382 def animate3 (args):

1383 return subplot_31(args), subplot_32(args), subplot_33(args), subplot_34(args), fig3.tight_layout()
1384

1385 anim3 = animation.FuncAnimation(fig3 , animate3, frames=complete_frames, save_count = 0, interval=1000, repeat = False, blit=False)
1386 #%%

1387 complete_input_array = np.ones([15,len(output_base_df)])

1388 complete_input_df = pd.DataFrame(complete_input_array)

1389 #change mpc array to datetimes

1390

1391 complete_input-df.iloc[0] = dates.date2num(output_base_df[ Date and Time’].values)
1392 complete_input_df.iloc[1] = simf.c_to_f(output_base.df[ Zone Air Temp (C)’].values)
1393 complete-input_df.iloc[2] = simf.c_to_f(output_base_df[ Drybulb Temp (C)’].values)
1394

1395 complete_input_df.iloc[3] = np.zeros(len(output_base_df))

1396

1397 complete_input_df.iloc[4] = output_base_df[ 'HVAC I1/0’]. values

1398 complete_input-df.iloc[5] = output_base_df[ 'TOD PRICING].values

1399 complete_input_df.iloc[6] = output_base_df[ NETMETERING PRICING’]. values

1400

1401 complete_input-df.iloc[7] = simf.c_-to_f(Cooling-SP_T) * np.ones(len(output_base_-df))
1402 complete_input_df.iloc[8] = simf.c_to_f(Heating.SP_T) = np.ones(len(output_base_df))
1403

1404 complete_input_df.iloc[11] = output_base_df[ Total Power Generated (W)’ ].values

1405 complete_input_df.iloc[12] = output_base_df[’Grid_Requirement (no battery)’].clip(lower = 0).values

1406 complete_input-df.iloc[14] = output_base_df[ Grid_-Requirement (no battery)’].clip(upper = 0).values
1407

82

www.manharaa.com




1408 complete_input-df.iloc[13] = output_base_df[’Act Demand’]. values

1409

1410 plt.pause(3)

1411

1412 fig3.savefig( plots\\%s\\%s\\actual_base_case_tod.eps’ %(location_.name , house_label))

1413

1414 #96%

1415

1416 complete_input_array = args-input = np.ones([15,len(output_df[ mpc_start_time:])])

1417 complete_input_df = pd.DataFrame(complete_input_array)

1418 #change mpc array to datetimes

1419

1420 complete_input_df.iloc [0] = dates.date2num(output_df[ Date and Time’][ mpc_start_time :]. values)
1421 complete_input_df.iloc[1] = simf.c_to_f(output_df[’Zone Air Temp (C)’ ][ mpc_start_time :].values)
1422 complete_input_df.iloc[2] = simf.c_to_f(output_df[ Drybulb Temp (C)’][ mpc_start_time :]. values)
1423

1424 mpc_sol_storage [ Timestep:%s’ %(i-array)] = mpc-sol

1425

1426

1427 soc_actual_array = np.zeros(len(mpc_sol_storage))

1428 for i,j in zip(mpc-sol_storage , range(len(mpc_-sol_storage))):

1429 soc_actual_array[j] = mpc_sol_storage[ %s %i ][ "soc ][0]

1430

1431 for i in range(len(output_df[ mpc_start_time:])):

1432 if i % 10 == 0:
1433 complete_input_df.iloc[3,i] = soc-actual_array[int(i/10)]
1434

1435 complete_input-df.iloc[4] = output.df[ 'HVAC 1/O’ ][ mpc-start_time :]. values

1436 complete_input_df.iloc[5] = output_df[ TOD PRICING ][ mpc_start_time :]. values

1437 complete_input-df.iloc[6] = output_.df[ NETMETERING PRICING’ ][ mpc.start_time :]. values

1438

1439 complete_input_df.iloc[7] = simf.c_to_f(Cooling.SP_T) * np.ones(len(output_df [ mpc_start_time:]))

1440 complete_input-df.iloc[8] = simf.c_to_f(Heating-SP_T) * np.ones(len(output_-df [ mpc_start_time:]))

1441

1442 complete_input-df.iloc[11] = output_-df[ Total Power Generated (W) ][ mpc-start_time:].values

1443 complete_input_df.iloc[12] = output_df[’ Grid_-Requirement (no battery) ][ mpc_start_time:].clip(lower = 0).values
1444 complete_input_df.iloc[14] = output_df[ Grid_Requirement (no battery)’ ][ mpc_start_time:].clip(upper = 0).values
1445

1446 complete_input_df.iloc[13] = output_df[ Act Demand’ ][ mpc_start_time :]. values

1447

1448 plt.pause(3)

1449

1450 fig3 .savefig( plots\\%s\\%s\\actual_optimized_case_tod.eps’ %(location_name , house_label))
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APPENDIX C. ENERGYPLUS CONFIGURATION FILE

C.1 EnergyPlus .idf file

Version ,
8.8; !— Version Identifier
SimulationControl ,
Yes, !— Do Zone Sizing Calculation
No, !— Do System Sizing Calculation
Yes, !— Do Plant Sizing Calculation
No, !~ Run Simulation for Sizing Periods
Yes; !— Run Simulation for Weather File Run Periods
Building ,
Phoenix Sky Harbor Intl Ap AZ 3350 sqft, !— Name
180, !— North Axis {deg}
Suburbs , !— Terrain
0.05, !— Loads Convergence Tolerance Value
0.05, !— Temperature Convergence Tolerance Value {deltaC}
FullExterior , !— Solar Distribution (FullExterior = Shading from/on exterior surfaces. All interior direct solar falls

The reflected beam solar from the floor is added to the transmitted diffuse radiation, which is distributed uniformly to all interior surfaces.)

50; !— Maximum Number of Warmup Days
ShadowCalculation ,

AverageOverDaysInFrequency , !— Calculation Method

20, !— Calculation Frequency

200; !— Maximum Figures in Shadow Overlap Calculations

Output: Diagnostics ,

DisplayAdvancedReportVariables ; !— Key 1

SurfaceConvectionAlgorithm: Inside ,

TARP; !— Algorithm

SurfaceConvectionAlgorithm : Outside ,

DOE—2; !'— Algorithm
HeatBalanceAlgorithm ,
ConductionTransferFunction , !— Algorithm
200; !— Surface Temperature Upper Limit {degC}

ZoneCapacitanceMultiplier: ResearchSpecial ,
Multiplier , !— Name

R !— Zone or ZoneList Name

1, !~ Temperature Capacitance Multiplier

15, !— Humidity Capacitance Multiplier

1; !— Carbon Dioxide Capacity Multiplier
Timestep ,

60; !~ Number of Timesteps per Hour
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ConvergenceLimits ,
1, !— Minimum System Timestep {min}

20; !— Maximum HVAC Iterations

Site : Location ,

Phoenix Sky Harbor Intl Ap AZ, !— Name

33.45, !— Latitude {deg}
—111.98, !~ Longitude {deg}
-1, !— Time Zone {hr}
336.9999864; !— Elevation {m}

Foundation:Kiva: Settings ,

1.731, !— Soil Conductivity {W/mXK}
1842.3, !— Soil Density {kg/m3}
418.70000000000005, !— Soil Specific Heat {J/kg—K}
0.9, !— Ground Solar Absorptivity

0.9, !— Ground Thermal Absorptivity
0.03, !— Ground Surface Roughness {m}
25, |- Far—Field Width {m}

ZeroFlux , !— Deep—Ground Boundary Condition
40, !— Deep—Ground Depth {m}

0.02, !— Minimum Cell Dimension {m}
1.5, !— Maximum Cell Growth Coefficient
Hourly ; !— Simulation Timestep

Site : GroundTemperature : BuildingSurface ,

19.507568933771957, !— Jan Ground Temperature {degC}
17.68388763001127, !— Feb Ground Temperature {degC}
17.537840691095834, !— Mar Ground Temperature {degC}
18.403270653280558, !— Apr Ground Temperature {degC}
21.877489695966784, !— May Ground Temperature {degC}
25.335524352510895, !— Jun Ground Temperature {degC}
28.333455587669853,  !— Jul Ground Temperature {degC}
30.232571292526984, !— Aug Ground Temperature {degC}
30.393911602755722, !— Sep Ground Temperature {degC}
28.849300174639847, !— Oct Ground Temperature {degC}
25.92781794610709, !— Nov Ground Temperature {degC}
22.57586170800307; !— Dec Ground Temperature {degC}

Site : GroundTemperature : Deep,

23.8, !— Jan Deep Ground Temperature {C}
23.8, !— Feb Deep Ground Temperature {C}
23.8, !— Mar Deep Ground Temperature {C}
23.8, !— Apr Deep Ground Temperature {C}
23.8, !— May Deep Ground Temperature {C}
23.8, !— Jun Deep Ground Temperature {C}
23.8, !— Jul Deep Ground Temperature {C}
23.8, !— Aug Deep Ground Temperature {C}
23.8, !— Sep Deep Ground Temperature {C}
23.8, !— Oct Deep Ground Temperature {C}
23.8, !— Nov Deep Ground Temperature {C}
23.8; !— Dec Deep Ground Temperature {C}

Site : WaterMainsTemperature ,
Correlation , !~ Calculation Method
R !— Schedule Name
23.8, !— Annual Average Outdoor Air Temperature {C}
23.844444444444445, !— Maximum Difference In Monthly Average Outdoor Air Temperature {deltaC}

The full EnergyPlus_config.idf file can be found at https://github.com/CSimsRun/Masters_Thesis. git
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